Not all nans are identical:
In [182]: np.nan is np.nan
Out[182]: True
In [183]: float('nan') is float('nan')
Out[183]: False
In [184]: np.float64('nan') is np.float64('nan')
Out[184]: False
Therefore,
In [178]: set([np.nan, np.nan])
Out[178]: {nan}
In [179]: set([float('nan'), float('nan')])
Out[179]: {nan, nan}
In [180]: set([np.float64('nan'), np.float64('nan')])
Out[180]: {nan, nan}
l
contains np.nan
s, which are identical, so
In [158]: set(l)
Out[158]: {nan, 0, 1}
but pd.Series(l).tolist()
contains np.float64('nan')
s which are not identical:
In [160]: [type(item) for item in pd.Series(l).tolist()]
Out[160]: [numpy.float64, numpy.float64, numpy.float64, numpy.float64]
so set does not treat them as equal:
In [157]: set(pd.Series(l).tolist())
Out[157]: {nan, 0.0, nan, 1.0}
If you have a Pandas Series, use it's unique
method instead of set
to find unique values:
>>> s = pd.Series(l)
>>> s.unique()
array([ nan, 0., 1.])
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…