Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
210 views
in Technique[技术] by (71.8m points)

python - Plotting two distance matrices together on same plot?

I'm trying to create dendrograms from two different distance matrices and compare them. I used the code here as a starting point, but the problem is since I'm using two different matrices but same clustering method, I need to plot two different matrices together for a comparative analysis. I was wondering if it is possible to separate to halves of each square/node diagonally to show two different distance matrices.

This image represents the result which I'm targeting for: enter image description here

Here is my code:

from sklearn import preprocessing
from sklearn.neighbors import DistanceMetric 
import pandas as pd
import numpy as np
from ete3 import Tree
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.pairwise import cosine_distances
import scipy
import pylab
import scipy.cluster.hierarchy as sch
import scipy.spatial.distance as sd 
import random
#g[n] is a one dimensional array containing datapoints
g1 = random.sample(range(30), 5)
g2 = random.sample(range(30), 5)
g3 = random.sample(range(30), 5)
g4 = random.sample(range(30), 5)
g5 = random.sample(range(30), 5)
g1 = np.array(g1)
g2 = np.array(g2)
g3 = np.array(g3)
g4 = np.array(g4)
g5 = np.array(g5)
X = (g1,g2,g3,g4,g5)
#Comparing between euclidean and cosine###########################################
distanceC = cosine_distances(X)
dist = DistanceMetric.get_metric('euclidean')
distanceE = dist.pairwise(X)
##################################################################################

#Plots############################################################################

# Compute and plot first dendrogram.
fig = pylab.figure(figsize=(8,8))
ax1 = fig.add_axes([0.09,0.1,0.2,0.6])
Y = sch.average(sd.squareform(distanceC))
Z1 = sch.dendrogram(Y, orientation='right')
ax1.set_xticks([])
ax1.set_yticks([])

# Compute and plot second dendrogram.
ax2 = fig.add_axes([0.3,0.71,0.6,0.2])
Y = sch.average(sd.squareform(distanceE))
Z2 = sch.dendrogram(Y)
ax2.set_xticks([])
ax2.set_yticks([])

# Plot distance matrix.
axmatrix = fig.add_axes([0.3,0.1,0.6,0.6])
idx1 = Z1['leaves']
idx2 = Z2['leaves']
distance = distance[idx1,:]
distance = distance[:,idx2]
im = axmatrix.matshow(distance, aspect='auto', origin='lower', cmap=pylab.cm.YlGnBu)
axmatrix.set_xticks([])
axmatrix.set_yticks([])

# Plot colorbar.
axcolor = fig.add_axes([0.91,0.1,0.02,0.6])
pylab.colorbar(im, cax=axcolor)
fig.show()
fig.savefig('dendrogram.png')
##################################################################################
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

There is no built-in method to draw an image consisting of triangles, cutting the pixels in half.

So one would need to build some custom heatmap. This could be done using a PolyCollection of triangles. In the solution below a function creates the points of a triangle around the origin, rotates them if needed, and applies an offset. Looping over the array allows to create a triangle for each point. Finally all those triangles are collected into a PolyCollection.

You may then decide to use a normal imshow or matshow plot for one of the arrays and the custom triangle matrix on top of it.

import matplotlib.pyplot as plt
import matplotlib.collections as collections
import numpy as np

def triatpos(pos=(0,0), rot=0):
    r = np.array([[-1,-1],[1,-1],[1,1],[-1,-1]])*.5
    rm = [[np.cos(np.deg2rad(rot)), -np.sin(np.deg2rad(rot))],
           [np.sin(np.deg2rad(rot)),np.cos(np.deg2rad(rot)) ] ]
    r = np.dot(rm, r.T).T
    r[:,0] += pos[0]
    r[:,1] += pos[1]
    return r

def triamatrix(a, ax, rot=0, cmap=plt.cm.viridis, **kwargs):
    segs = []
    for i in range(a.shape[0]):
        for j in range(a.shape[1]):
            segs.append(triatpos((j,i), rot=rot) )
    col = collections.PolyCollection(segs, cmap=cmap, **kwargs)
    col.set_array(a.flatten())
    ax.add_collection(col)
    return col


A,B = np.meshgrid(range(5), range(4))
B*=4

fig, ax=plt.subplots()
im1 = ax.imshow(A)
im2 = triamatrix(B, ax, rot=90, cmap="Reds")

fig.colorbar(im1, ax=ax, )
fig.colorbar(im2, ax=ax, )

plt.show()

Triangle heatmap

Of course it would be equally possible to use two of those triangle matrices

im1 = triamatrix(A, ax, rot=0, cmap="Blues")
im2 = triamatrix(B, ax, rot=180, cmap="Reds")
ax.set_xlim(-.5,A.shape[1]-.5)
ax.set_ylim(-.5,A.shape[0]-.5)

which would also require to set the axis limits manually.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...