Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
523 views
in Technique[技术] by (71.8m points)

dataframe - How can i add multiple columns in Spark Datframe in efficiently

I have set of columns names and need to add those columns in existing dataframe which is also very huge in size, i need to add the all columns from set to dataframe with StringType and default null value. I am following below approach but i found that when the number of columns and dataframe size is huge this affecting my performance. Is there any better way to this in spark? Note : Number of columns : ~500

import sparkSession.sqlContext.implicits._
var df = Seq(
  (1, "James"),
  (2, "Michael"),
  (3, "Robert"),
  (4, "Washington"),
  (5, "Jefferson")
).toDF("Id", "Name")
df.show(false)

val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
diff_set.foreach(x => {
  if (x.size > 0) {
    df = df.withColumn(x, lit(null)).withColumn(x, col(x).cast(StringType))
  }
})
df.show(false)
+---+----------+
|Id |Name      |
+---+----------+
|1  |James     |
|2  |Michael   |
|3  |Robert    |
|4  |Washington|
|5  |Jefferson |
+---+----------+

+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
|Id |Name      |col7|col8|col3|col17|col6|col20|col2|col14|col16|col21|col15|col9|col10|col5|col1|col13|col19|col11|col22|col18|col4|col12|
+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
|1  |James     |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|2  |Michael   |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|3  |Robert    |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|4  |Washington|null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|5  |Jefferson |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Use select

df
.select(
    df.columns.map(c => col(c).as(c)) ++ 
    diff_set.map(c => lit(null).cast("string").as(c)):_*
)
.show(false)

Use foldLeft

scala> df.show(false)
+---+----------+
|Id |Name      |
+---+----------+
|1  |James     |
|2  |Michael   |
|3  |Robert    |
|4  |Washington|
|5  |Jefferson |
+---+----------+
scala> val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
scala> 

diff_set
.foldLeft(df)((ddf,c) => 
    ddf
    .withColumn(c,lit(null).cast("string"))
)
.show(false)

+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
|Id |Name      |col7|col8|col3|col17|col6|col20|col2|col14|col16|col21|col15|col9|col10|col5|col1|col13|col19|col11|col22|col18|col4|col12|
+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+
|1  |James     |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|2  |Michael   |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|3  |Robert    |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|4  |Washington|null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
|5  |Jefferson |null|null|null|null |null|null |null|null |null |null |null |null|null |null|null|null |null |null |null |null |null|null |
+---+----------+----+----+----+-----+----+-----+----+-----+-----+-----+-----+----+-----+----+----+-----+-----+-----+-----+-----+----+-----+

Comparison

Using foldLeft for 1000000 records - Time taken: 18017 ms

spark.time {
    val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
    val df = (1 to 1000000).toDF
    diff_set.foldLeft(df)((ddf,c) => ddf.withColumn(c,lit(null).cast("string"))).show(false)
}

Using crossJoin for 1000000 records - Time taken: 13224 ms

spark.time {
    val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
    val df = (1 to 1000000).toDF
    val dfb = Seq(("null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null", "null")).toDF(diff_set.toList:_*)
    df.crossJoin(dfb).show(false)
}

Using select for 1000000 records - Time taken: 8519 ms

spark.time {
    val diff_set = Seq("col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9", "col10", "col11", "col12", "col13", "col14", "col15", "col16", "col17", "col18", "col19", "col20", "col21", "col22").toSet
    val df = (1 to 1000000).toDF
    df.select(df.columns.map(c => col(c).as(c)) ++ diff_set.map(c => lit(null).cast("string").as(c)):_*).show
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...