Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
422 views
in Technique[技术] by (71.8m points)

python - How to de-skew a text image also retrieve the new bounding box of that image?

Here's a receipt image that I've got and I've plotted it using matplotlib and If you see the image the text in it is not straight. How can I de-skew and fix it?

from skimage import io
import cv2

# x1, y1, x2, y2, x3, y3, x4, y4
bbox_coords = [[20, 68], [336, 68], [336, 100], [20, 100]]

image = io.imread('https://i.ibb.co/3WCsVBc/test.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

fig, ax = plt.subplots(figsize=(20, 20))
ax.imshow(gray, cmap='Greys_r')

# for plotting bounding box uncomment the two lines below
#rect = Polygon(bbox_coords, fill=False, linewidth=1, edgecolor='r')
#ax.add_patch(rect)
plt.show()

print(gray.shape)
(847, 486)

receipt image

I think if we want to de-skew first we have to find the edges, so I tried to find the edges using canny algorithm and then get contours like below.

from skimage import filters, feature, measure

def edge_detector(image):
    image = filters.gaussian(image, 2, mode='reflect')
    edges = feature.canny(image)
    contours = measure.find_contours(edges, 0.8)
    return edges, contours

fig, ax = plt.subplots(figsize=(20, 20))

ax.imshow(gray, cmap='Greys_r'); 
gray_image, contours = edge_detector(gray)

for n, contour in enumerate(contours):
    ax.plot(contour[:, 1], contour[:, 0], linewidth=2)

The edges that I've got from above code is the edges of each text but that is not what I needed. I need to get edges of receipt right?

Also I need a way to get the new bounding box coordinates after de-skewing the image (i.e straightening the image)?

If anyone has worked on similar problem please help me out? Thanks.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here's a modified implementation of the Projection Profile Method to correct skewed images as described in Projection profile based skew estimation algorithm for JBIG compressed images. After obtaining a binary image, the idea is to rotate the image at various angles and generate a histogram of pixels in each iteration. To determine the skew angle, we compare the maximum difference between peaks and using this skew angle, rotate the image to correct the skew. The amount of peaks to determine can be adjusted by the delta value, the lower the delta, the more peaks will be checked with the tradeoff that the process will take longer.


Before -> After

image image

Code

import cv2
import numpy as np
from scipy.ndimage import interpolation as inter

def correct_skew(image, delta=.1, limit=5):
    def determine_score(arr, angle):
        data = inter.rotate(arr, angle, reshape=False, order=0)
        histogram = np.sum(data, axis=1)
        score = np.sum((histogram[1:] - histogram[:-1]) ** 2)
        return histogram, score

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.medianBlur(gray, 3)
    thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] 

    scores = []
    angles = np.arange(-limit, limit + delta, delta)
    for angle in angles:
        histogram, score = determine_score(thresh, angle)
        scores.append(score)

    best_angle = angles[scores.index(max(scores))]

    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, best_angle, 1.0)
    rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, 
              borderMode=cv2.BORDER_REPLICATE)

    return best_angle, rotated

if __name__ == '__main__':
    image = cv2.imread('1.jpg')
    angle, rotated = correct_skew(image)
    print(angle)
    cv2.imshow('rotated', rotated)
    cv2.imwrite('rotated.png', rotated)
    cv2.waitKey()

Note: Also take a look at rotated skewed image to upright position for another approach


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...