Don't use .apply
here, pandas has various built-in utilities for handling datetime objects, use the dt
attribute on the series objects:
In [11]: start = datetime(2011, 1, 1)
...: end = datetime(2012, 1, 1)
...:
In [12]: df = pd.DataFrame({'data':pd.date_range(start, end)})
In [13]: df.dtypes
Out[13]:
data datetime64[ns]
dtype: object
In [14]: df['year'] = df.data.dt.year
In [15]: df['hour'] = df.data.dt.hour
In [16]: df['month'] = df.data.dt.month
In [17]: df['dayofweek'] = df.data.dt.dayofweek
In [18]: df.head()
Out[18]:
data year hour month dayofweek
0 2011-01-01 2011 0 1 5
1 2011-01-02 2011 0 1 6
2 2011-01-03 2011 0 1 0
3 2011-01-04 2011 0 1 1
4 2011-01-05 2011 0 1 2
Or, dynamically as you wanted using getattr
:
In [24]: df = pd.DataFrame({'data':pd.date_range(start, end)})
In [25]: nomtimes = ["year", "hour", "month", "dayofweek"]
...:
In [26]: df.head()
Out[26]:
data
0 2011-01-01
1 2011-01-02
2 2011-01-03
3 2011-01-04
4 2011-01-05
In [27]: for t in nomtimes:
...: df[t] = getattr(df.data.dt, t)
...:
In [28]: df.head()
Out[28]:
data year hour month dayofweek
0 2011-01-01 2011 0 1 5
1 2011-01-02 2011 0 1 6
2 2011-01-03 2011 0 1 0
3 2011-01-04 2011 0 1 1
4 2011-01-05 2011 0 1 2
And if you must use a one-liner, go with:
In [30]: df = pd.DataFrame({'data':pd.date_range(start, end)})
In [31]: df.head()
Out[31]:
data
0 2011-01-01
1 2011-01-02
2 2011-01-03
3 2011-01-04
4 2011-01-05
In [32]: df = df.assign(**{t:getattr(df.data.dt,t) for t in nomtimes})
In [33]: df.head()
Out[33]:
data dayofweek hour month year
0 2011-01-01 5 0 1 2011
1 2011-01-02 6 0 1 2011
2 2011-01-03 0 0 1 2011
3 2011-01-04 1 0 1 2011
4 2011-01-05 2 0 1 2011
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…