Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
275 views
in Technique[技术] by (71.8m points)

python - Change values in pandas dataframe according to value_counts()

I have following pandas dataframe :

import pandas as pd 
from pandas import Series, DataFrame

data = DataFrame({'Qu1': ['apple', 'potato', 'cheese', 'banana', 'cheese', 'banana', 'cheese', 'potato', 'egg'],
              'Qu2': ['sausage', 'banana', 'apple', 'apple', 'apple', 'sausage', 'banana', 'banana', 'banana'],
              'Qu3': ['apple', 'potato', 'sausage', 'cheese', 'cheese', 'potato', 'cheese', 'potato', 'egg']})

I'd like to change values in columns Qu1,Qu2,Qu3 according to value_counts() when value count great or equal some number

For example for Qu1 column

>>> pd.value_counts(data.Qu1) >= 2
cheese     True
potato     True
banana     True
apple     False
egg       False

I'd like to keep values cheese,potato,banana, because each value has at least two appearances.

From values apple and egg I'd like to create valueothers

For column Qu2 no changes :

>>> pd.value_counts(data.Qu2) >= 2
banana     True
apple      True
sausage    True

The final result as in attached test_data

test_data = DataFrame({'Qu1': ['other', 'potato', 'cheese', 'banana', 'cheese', 'banana', 'cheese', 'potato', 'other'],
                  'Qu2': ['sausage', 'banana', 'apple', 'apple', 'apple', 'sausage', 'banana', 'banana', 'banana'],
                  'Qu3': ['other', 'potato', 'other', 'cheese', 'cheese', 'potato', 'cheese', 'potato', 'other']})

Thanks !

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I would create a dataframe of same shape where the corresponding entry is the value count:

data.apply(lambda x: x.map(x.value_counts()))
Out[229]: 
   Qu1  Qu2  Qu3
0    1    2    1
1    2    4    3
2    3    3    1
3    2    3    3
4    3    3    3
5    2    2    3
6    3    4    3
7    2    4    3
8    1    4    1

And, use the results in df.where to return "other" where the corresponding entry is smaller than 2:

data.where(data.apply(lambda x: x.map(x.value_counts()))>=2, "other")

      Qu1      Qu2     Qu3
0   other  sausage   other
1  potato   banana  potato
2  cheese    apple   other
3  banana    apple  cheese
4  cheese    apple  cheese
5  banana  sausage  potato
6  cheese   banana  cheese
7  potato   banana  potato
8   other   banana   other

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...