Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
185 views
in Technique[技术] by (71.8m points)

python 3.x - Keras Image Preprocessing

My training images are downscaled versions of their associated HR image. Thus, the input and the output images aren't the same dimension. For now, I'm using a hand-crafted sample of 13 images, but eventually I would like to be able to use my 500-ish HR (high-resolution) images dataset. This dataset, however, does not have images of the same dimension, so I'm guessing I'll have to crop them in order to obtain a uniform dimension.

I currently have this code set up: it takes a bunch of 512x512x3 images and applies a few transformations to augment the data (flips). I thus obtain a basic set of 39 images in their HR form, and then I downscale them by a factor of 4, thus obtaining my trainset which consits of 39 images of dimension 128x128x3.

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

import matplotlib.image as mpimg
import skimage
from skimage import transform

from constants import data_path
from constants import img_width
from constants import img_height

from model import setUpModel


def setUpImages():

    train = []
    finalTest = []

    sample_amnt = 11
    max_amnt = 13

    # Extracting images (512x512)
    for i in range(sample_amnt):
        train.append(mpimg.imread(data_path + str(i) + '.jpg'))

    for i in range(max_amnt-sample_amnt):
        finalTest.append(mpimg.imread(data_path + str(i+sample_amnt) + '.jpg'))

    # # TODO: https://keras.io/preprocessing/image/
    # ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False,
    #                    samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0,
    #                    width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0,
    #                    zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False,
    #                    vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None,
    #                    validation_split=0.0, dtype=None)

    # Augmenting data
    trainData = dataAugmentation(train)
    testData  = dataAugmentation(finalTest)

    setUpData(trainData, testData)


def setUpData(trainData, testData):

    # print(type(trainData))                          # <class 'numpy.ndarray'>
    # print(len(trainData))                           # 64
    # print(type(trainData[0]))                       # <class 'numpy.ndarray'>
    # print(trainData[0].shape)                       # (1400, 1400, 3)
    # print(trainData[len(trainData)//2-1].shape)     # (1400, 1400, 3)
    # print(trainData[len(trainData)//2].shape)       # (350, 350, 3)
    # print(trainData[len(trainData)-1].shape)        # (350, 350, 3)

    # TODO: substract mean of all images to all images

    # Separating the training data
    Y_train = trainData[:len(trainData)//2]    # First half is the unaltered data
    X_train = trainData[len(trainData)//2:]    # Second half is the deteriorated data

    # Separating the testing data
    Y_test = testData[:len(testData)//2]  # First half is the unaltered data
    X_test = testData[len(testData)//2:]  # Second half is the deteriorated data

    # Adjusting shapes for Keras input  # TODO: make into a function ?
    X_train = np.array([x for x in X_train])
    Y_train = np.array([x for x in Y_train])
    Y_test = np.array([x for x in Y_test])
    X_test = np.array([x for x in X_test])

    # # Sanity check: display four images (2x HR/LR)
    # plt.figure(figsize=(10, 10))
    # for i in range(2):
    #     plt.subplot(2, 2, i + 1)
    #     plt.imshow(Y_train[i], cmap=plt.cm.binary)
    # for i in range(2):
    #     plt.subplot(2, 2, i + 1 + 2)
    #     plt.imshow(X_train[i], cmap=plt.cm.binary)
    # plt.show()

    setUpModel(X_train, Y_train, X_test, Y_test)


# TODO: possibly remove once Keras Preprocessing is integrated?
def dataAugmentation(dataToAugment):
    print("Starting to augment data")
    arrayToFill = []

    # faster computation with values between 0 and 1 ?
    dataToAugment = np.divide(dataToAugment, 255.)

    # TODO: switch from RGB channels to CbCrY
    # # TODO: Try GrayScale
    # trainingData = np.array(
    #     [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(350, 350, 1) for x in trainingData])
    # validateData = np.array(
    #     [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(1400, 1400, 1) for x in validateData])

    # adding the normal images   (8)
    for i in range(len(dataToAugment)):
        arrayToFill.append(dataToAugment[i])
    # vertical axis flip         (-> 16)
    for i in range(len(arrayToFill)):
        arrayToFill.append(np.fliplr(arrayToFill[i]))
    # horizontal axis flip       (-> 32)
    for i in range(len(arrayToFill)):
        arrayToFill.append(np.flipud(arrayToFill[i]))

    # downsizing by scale of 4   (-> 64 images of 128x128x3)
    for i in range(len(arrayToFill)):
        arrayToFill.append(skimage.transform.resize(
            arrayToFill[i],
            (img_width/4, img_height/4),
            mode='reflect',
            anti_aliasing=True))

    # # Sanity check: display the images
    # plt.figure(figsize=(10, 10))
    # for i in range(64):
    #     plt.subplot(8, 8, i + 1)
    #     plt.imshow(arrayToFill[i], cmap=plt.cm.binary)
    # plt.show()

    return np.array(arrayToFill)

My question is: in my case, can I use the Preprocessing tool that Keras offers? I would ideally like to be able to input my varying sized images of high quality, crop them (not downsize them) to 512x512x3, and data augment them through flips and whatnot. Substracting the mean would also be part of what I'd like to achieve. That set would represent my validation set.

Reusing the validation set, I want to downscale by a factor of 4 all the images, and that would generate my training set.

Those two sets could then be split appropriately to obtain, ultimately, the famous X_train Y_train X_test Y_test.

I'm just hesitant about throwing out all the work I've done so far to preprocess my mini sample, but I'm thinking if it can all be done with a single built-in function, maybe I should give that a go.

This is my first ML project, hence me not understanding very well Keras, and the documentation isn't always the clearest. I'm thinking that the fact that I'm working with a X and Y that are different in size, maybe this function doesn't apply to my project.

Thank you! :)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Yes you can use keras preprocessing function. Below some snippets to help you...

def cropping_function(x):
    ...
    return cropped_image

X_image_gen = ImageDataGenerator(preprocessing_function = cropping_function,
                               horizontal_flip = True, 
                               vertical_flip=True)
X_train_flow = X_image_gen.flow(X_train, batch_size = 16, seed = 1)
Y_image_gen = ImageDataGenerator(horizontal_flip = True, 
                                 vertical_flip=True)
Y_train_flow = Y_image_gen.flow(y_train, batch_size = 16, seed = 1)
train_flow = zip(X_train_flow,Y_train_flow)
model.fit_generator(train_flow)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...