I have I simple problem but I cannot find a solution anywhere.
I have to integrate a function (for example using a Simpson's rule subroutine) but I am obliged to pass to my function more than one argument: one is the variable that I want to integrate later and another one is just a value coming from a different calculation which I cannot perform inside the function.
The problem is that the Simpson subroutine only accept f(x) to perform the integral and not f(x,y).
After Vladimir suggestions I modified the code.
Below the example:
Program main2
!------------------------------------------------------------------
! Integration of a function using Simpson rule
! with doubling number of intervals
!------------------------------------------------------------------
! to compile:
! gfortran main2.f90 -o simp2
implicit none
double precision r, rb, rmin, rmax, rstep, integral, eps
double precision F_int
integer nint, i, rbins
double precision t
rbins = 4
rmin = 0.0
rmax = 4.0
rstep = (rmax-rmin)/rbins
rb = rmin
eps = 1.0e-8
func = 0.0
t=2.0
do i=1,rbins
call func(rb,t,res)
write(*,*)'r, f(rb) (in main) = ', rb, res
!test = F_int(rb)
!write(*,*)'test F_int (in loop) = ', test
call simpson2(F_int(rb),rmin,rb,eps,integral,nint)
write(*,*)'r, integral = ', rb, integral
rb = rb+rstep
end do
end program main2
subroutine func(x,y,res)
!----------------------------------------
! Real Function
!----------------------------------------
implicit none
double precision res
double precision, intent(in) :: x
double precision y
res = 2.0*x + y
write(*,*)'f(x,y) (in func) = ',res
return
end subroutine func
function F_int(x)
!Function to integrate
implicit none
double precision F_int, res
double precision, intent(in) :: x
double precision y
call func(x,y,res)
F_int = res
end function F_int
Subroutine simpson2(f,a,b,eps,integral,nint)
!==========================================================
! Integration of f(x) on [a,b]
! Method: Simpson rule with doubling number of intervals
! till error = coeff*|I_n - I_2n| < eps
! written by: Alex Godunov (October 2009)
!----------------------------------------------------------
! IN:
! f - Function to integrate (supplied by a user)
! a - Lower limit of integration
! b - Upper limit of integration
! eps - tolerance
! OUT:
! integral - Result of integration
! nint - number of intervals to achieve accuracy
!==========================================================
implicit none
double precision f, a, b, eps, integral
double precision sn, s2n, h, x
integer nint
double precision, parameter :: coeff = 1.0/15.0 ! error estimate coeff
integer, parameter :: nmax=1048576 ! max number of intervals
integer n, i
! evaluate integral for 2 intervals (three points)
h = (b-a)/2.0
sn = (1.0/3.0)*h*(f(a)+4.0*f(a+h)+f(b))
write(*,*)'a, b, h, sn (in simp) = ', a, b, h, sn
! loop over number of intervals (starting from 4 intervals)
n=4
do while (n <= nmax)
s2n = 0.0
h = (b-a)/dfloat(n)
do i=2, n-2, 2
x = a+dfloat(i)*h
s2n = s2n + 2.0*f(x) + 4.0*f(x+h)
end do
s2n = (s2n + f(a) + f(b) + 4.0*f(a+h))*h/3.0
if(coeff*abs(s2n-sn) <= eps) then
integral = s2n + coeff*(s2n-sn)
nint = n
exit
end if
sn = s2n
n = n*2
end do
return
end subroutine simpson2
I think I'm pretty close to the solution but I cannot figure it out...
If I call simpson2(F_int, ..) without putting the argument in F_int I receive this message:
call simpson2(F_int,rmin,rb,eps,integral,nint)
1
Warning: Expected a procedure for argument 'f' at (1)
Any help?
Thanks in advance!
See Question&Answers more detail:
os