Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
311 views
in Technique[技术] by (71.8m points)

r - Plot scatterplot on a map in Shiny

how do I plot my scatterplot on a map? I managed to plot my scatterplot, however I wanted it to be plotted on a map. I believe that an option is to use the leaflet package, since I have the Latitude and Longitude coordinates, but I don't know how to use it. Please, if you have other options feel free. Could you help me with this problem ?? The executable code is below.

Thank you very much!

library(shiny)
library(ggplot2)
library(rdist)
library(geosphere)
library(kableExtra)
library(readxl)
library(tidyverse)
library(DT)

#database
df<-structure(list(Properties = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9,  -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, 
                                                                                                                                                 + -23.9, -23.9, -23.9, -23.9, -23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9), Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.7, 
                                                                                                                                                                                                                                                                                                     + -49.7, -49.7, -49.7, -49.7, -49.6, -49.6, -49.6, -49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6), Waste = c(526, 350, 526, 469, 285, 175, 175, 350, 350, 175, 350, 175, 175, 364, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          + 175, 175, 350, 45.5, 54.6,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350)), class = "data.frame", row.names = c(NA, -35L))

function.clustering<-function(df,k,Filter1,Filter2){

  if (Filter1==2){
    Q1<-matrix(quantile(df$Waste, probs = 0.25)) 
    Q3<-matrix(quantile(df$Waste, probs = 0.75))
    L<-Q1-1.5*(Q3-Q1)
    S<-Q3+1.5*(Q3-Q1)
    df_1<-subset(df,Waste>L[1]) 
    df<-subset(df_1,Waste<S[1])
  }

  #cluster
  coordinates<-df[c("Latitude","Longitude")]
  d<-as.dist(distm(coordinates[,2:1]))
  fit.average<-hclust(d,method="average") 


  #Number of clusters
  clusters<-cutree(fit.average, k) 
  nclusters<-matrix(table(clusters))  
  df$cluster <- clusters 

  #Localization
  center_mass<-matrix(nrow=k,ncol=2)
  for(i in 1:k){
    center_mass[i,]<-c(weighted.mean(subset(df,cluster==i)$Latitude,subset(df,cluster==i)$Waste),
                       weighted.mean(subset(df,cluster==i)$Longitude,subset(df,cluster==i)$Waste))}
  coordinates$cluster<-clusters 
  center_mass<-cbind(center_mass,matrix(c(1:k),ncol=1)) 

  #Coverage
  coverage<-matrix(nrow=k,ncol=1)
  for(i in 1:k){
    aux_dist<-distm(rbind(subset(coordinates,cluster==i),center_mass[i,])[,2:1])
    coverage[i,]<-max(aux_dist[nclusters[i,1]+1,])}
  coverage<-cbind(coverage,matrix(c(1:k),ncol=1))
  colnames(coverage)<-c("Coverage_meters","cluster")

  #Sum of Waste from clusters
  sum_waste<-matrix(nrow=k,ncol=1)
  for(i in 1:k){
    sum_waste[i,]<-sum(subset(df,cluster==i)["Waste"])
  }
  sum_waste<-cbind(sum_waste,matrix(c(1:k),ncol=1))
  colnames(sum_waste)<-c("Potential_Waste_m3","cluster")

  #Output table
  data_table <- Reduce(merge, list(df, coverage, sum_waste))
  data_table <- data_table[order(data_table$cluster, as.numeric(data_table$Properties)),]
  data_table_1 <- aggregate(. ~ cluster + Coverage_meters + Potential_Waste_m3, data_table[,c(1,7,6,2)], toString)

  #Scatter Plot
  suppressPackageStartupMessages(library(ggplot2))
  df1<-as.data.frame(center_mass)
  colnames(df1) <-c("Latitude", "Longitude", "cluster")
  g<-ggplot(data=df,  aes(x=Longitude, y=Latitude,  color=factor(clusters))) + geom_point(aes(x=Longitude, y=Latitude), size = 4)
  Centro_View<- g +  geom_text(data=df, mapping=aes(x=eval(Longitude), y=eval(Latitude), label=Waste), size=3, hjust=-0.1)+ geom_point(data=df1, mapping=aes(Longitude, Latitude), color= "green", size=4) + geom_text(data=df1, mapping = aes(x=Longitude, y=Latitude, label = 1:k), color = "black", size = 4)
  plotGD<-print(Centro_View + ggtitle("Scatter Plot") + theme(plot.title = element_text(hjust = 0.5)))

  return(list(
    "Data" = data_table_1,
    "Plot" = plotGD
  ))
}

ui <- bootstrapPage(
  navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
             "Clustering", 

             tabPanel("General Solution",

                      sidebarLayout(
                        sidebarPanel(
                          radioButtons("filtro1", h3("Select properties"),
                                       choices = list("All properties" = 1, 
                                                      "Exclude properties" = 2),
                                       selected = 1),

                          tags$b(h5("(a) Choose other filters")),
                          tags$b(h5("(b) Choose clusters")),  
                          sliderInput("Slider", h5(""),
                                      min = 2, max = 8, value = 5)
                      ),

                        mainPanel(
                          tabsetPanel(      
                            tabPanel("Solution", plotOutput("ScatterPlot"))))

                      ))))


server <- function(input, output, session) {

  Modelclustering<-reactive(function.clustering(df,input$Slider,1,1))

  output$ScatterPlot <- renderPlot({
    Modelclustering()[[2]]
  })

  observeEvent(input$Slider,{
    updateSelectInput(session,'select',
                      choices=unique(df[df==input$Slider]))
  }) 


}

shinyApp(ui = ui, server = server)

Thank you very much!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I can think of a couple things that may help you.

library(shiny)
library(ggplot2)

useri <- shinyUI(pageWithSidebar(
headerPanel("Reactive Plot"),
sidebarPanel(
selectInput('x','X-Axis',names(iris)),
selectInput('y','Y-Axis',names(iris)),
selectInput('color','Color',c('None',names(iris[5])))),
mainPanel(uiOutput("plotui"),dataTableOutput("plot_brushed_points"))))

serveri <- shinyServer(function(input,output) {
output$plot <- renderPlot({
p <- ggplot(iris,aes_string(x=input$x, y=input$y))+geom_point()+theme_bw()
if(input$color != 'None')
  p <- p + aes_string(color=input$color)
print(p)
})
output$plotui <- renderUI(plotOutput("plot",brush = brushOpts("plot_brush")))
output$plot_brushed_points <- renderDataTable(brushedPoints(iris,input$plot_brush,input$x,input$y), options=list(searching=FALSE, paging = FALSE))
})

shinyApp(useri, serveri)

enter image description here

Also...

library(shiny)
library(shinydashboard)
library(shinyjs)
library(glue)

ui <- dashboardPage(
  dashboardHeader(),
  dashboardSidebar(selectInput("cols", NULL, c(2, 3, 4, 6, 12), 4)),
  dashboardBody(
    useShinyjs(),
    div(
      box(solidHeader = TRUE,
          title = "Box",
          width = 4,
          status = "info",
          sliderInput("sld", "n:", 1, 100, 50),
          plotOutput("plt")
      ), id = "box-parent")
  )) 

server <- function(input, output) {
  observe({
    cols <- req(input$cols)
    runjs(code = glue('var $el = $("#box-parent > :first");',
                      '$el.removeClass(function (index, className) {{',
                      'return (className.match(/(^|\s)col-sm-\d+/g) || []).join(" ")',
                      '}});',
                      '$el.addClass("col-sm-{cols}");'))
  })

  output$plt <- renderPlot(plot(rnorm(input$sld), rnorm(input$sld)))
}

shinyApp(ui, server)

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...