For large arrays, a vectorised numpy operation is the fastest. If you must loop, prefer xrange
/range
and avoid using np.arange
.
In numpy you should use combinations of vectorized calculations, ufuncs and indexing to solve your problems as it runs at C
speed.
Looping over numpy arrays is inefficient compared to this.
(Something like the worst thing you could do would be to iterate over the array with an index created with range
or np.arange
as the first sentence in your question suggests, but I'm not sure if you really mean that.)
import numpy as np
import sys
sys.version
# out: '2.7.3rc2 (default, Mar 22 2012, 04:35:15)
[GCC 4.6.3]'
np.version.version
# out: '1.6.2'
size = int(1E6)
%timeit for x in range(size): x ** 2
# out: 10 loops, best of 3: 136 ms per loop
%timeit for x in xrange(size): x ** 2
# out: 10 loops, best of 3: 88.9 ms per loop
# avoid this
%timeit for x in np.arange(size): x ** 2
#out: 1 loops, best of 3: 1.16 s per loop
# use this
%timeit np.arange(size) ** 2
#out: 100 loops, best of 3: 19.5 ms per loop
So for this case numpy is 4 times faster than using xrange
if you do it right. Depending on your problem numpy can be much faster than a 4 or 5 times speed up.
The answers to this question explain some more advantages of using numpy arrays instead of python lists for large data sets.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…