Red Black trees are good for creating well-balanced trees. The major problem with binary search trees is that you can make them unbalanced very easily. Imagine your first number is a 15. Then all the numbers after that are increasingly smaller than 15. You'll have a tree that is very heavy on the left side and has nothing on the right side.
Red Black trees solve that by forcing your tree to be balanced whenever you insert or delete. It accomplishes this through a series of rotations between ancestor nodes and child nodes. The algorithm is actually pretty straightforward, although it is a bit long. I'd suggest picking up the CLRS (Cormen, Lieserson, Rivest and Stein) textbook, "Introduction to Algorithms" and reading up on RB Trees.
The implementation is also not really so short so it's probably not really best to include it here. Nevertheless, trees are used extensively for high performance apps that need access to lots of data. They provide a very efficient way of finding nodes, with a relatively small overhead of insertion/deletion. Again, I'd suggest looking at CLRS to read up on how they're used.
While BSTs may not be used explicitly - one example of the use of trees in general are in almost every single modern RDBMS. Similarly, your file system is almost certainly represented as some sort of tree structure, and files are likewise indexed that way. Trees power Google. Trees power just about every website on the internet.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…