Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
514 views
in Technique[技术] by (71.8m points)

machine learning - Normalize data before or after split of training and testing data?

I want to separate my data into train and test set, should I apply normalization over data before or after the split? Does it make any difference while building predictive model?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You first need to split the data into training and test set (validation set could be useful too).

Don't forget that testing data points represent real-world data. Feature normalization (or data standardization) of the explanatory (or predictor) variables is a technique used to center and normalise the data by subtracting the mean and dividing by the variance. If you take the mean and variance of the whole dataset you'll be introducing future information into the training explanatory variables (i.e. the mean and variance).

Therefore, you should perform feature normalisation over the training data. Then perform normalisation on testing instances as well, but this time using the mean and variance of training explanatory variables. In this way, we can test and evaluate whether our model can generalize well to new, unseen data points.

For a more comprehensive read, you can read my article Feature Scaling and Normalisation in a nutshell


As an example, assuming we have the following data:

>>> import numpy as np
>>> 
>>> X, y = np.arange(10).reshape((5, 2)), range(5)

where X represents our features:

>>> X
[[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]

and Y contains the corresponding label

>>> list(y)
>>> [0, 1, 2, 3, 4]

Step 1: Create training/testing sets

>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

>>> X_train
[[4 5]
 [0 1]
 [6 7]]
>>>
>>> X_test
[[2 3]
 [8 9]]
>>>
>>> y_train
[2, 0, 3]
>>>
>>> y_test
[1, 4]

Step 2: Normalise training data

>>> from sklearn import preprocessing
>>> 
>>> normalizer = preprocessing.Normalizer()
>>> normalized_train_X = normalizer.fit_transform(X_train)
>>> normalized_train_X
array([[0.62469505, 0.78086881],
       [0.        , 1.        ],
       [0.65079137, 0.7592566 ]])

Step 3: Normalize testing data

>>> normalized_test_X = normalizer.transform(X_test)
>>> normalized_test_X
array([[0.5547002 , 0.83205029],
       [0.66436384, 0.74740932]])

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...