Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
961 views
in Technique[技术] by (71.8m points)

tensorflow - Understanding the ResourceExhaustedError: OOM when allocating tensor with shape

I'm trying to implement a skip thought model using tensorflow and a current version is placed here. enter image description here

Currently I using one GPU of my machine (total 2 GPUs) and the GPU info is

2017-09-06 11:29:32.657299: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties:
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.683
pciBusID 0000:02:00.0
Total memory: 10.91GiB
Free memory: 10.75GiB

However, I got OOM when I'm trying to feed data to the model. I try to debug as follow:

I use the following snippet right after I run sess.run(tf.global_variables_initializer())

    logger.info('Total: {} params'.format(
        np.sum([
            np.prod(v.get_shape().as_list())
            for v in tf.trainable_variables()
        ])))

and got 2017-09-06 11:29:51,333 INFO main main.py:127 - Total: 62968629 params, roughly about 240Mb if all using tf.float32. The output of tf.global_variables is

[<tf.Variable 'embedding/embedding_matrix:0' shape=(155229, 200) dtype=float32_ref>,
 <tf.Variable 'encoder/rnn/gru_cell/gates/kernel:0' shape=(400, 400) dtype=float32_ref>,
 <tf.Variable 'encoder/rnn/gru_cell/gates/bias:0' shape=(400,) dtype=float32_ref>,
 <tf.Variable 'encoder/rnn/gru_cell/candidate/kernel:0' shape=(400, 200) dtype=float32_ref>,
 <tf.Variable 'encoder/rnn/gru_cell/candidate/bias:0' shape=(200,) dtype=float32_ref>,
 <tf.Variable 'decoder/weights:0' shape=(200, 155229) dtype=float32_ref>,
 <tf.Variable 'decoder/biases:0' shape=(155229,) dtype=float32_ref>,
 <tf.Variable 'decoder/previous_decoder/rnn/gru_cell/gates/kernel:0' shape=(400, 400) dtype=float32_ref>,
 <tf.Variable 'decoder/previous_decoder/rnn/gru_cell/gates/bias:0' shape=(400,) dtype=float32_ref>,
 <tf.Variable 'decoder/previous_decoder/rnn/gru_cell/candidate/kernel:0' shape=(400, 200) dtype=float32_ref>,
 <tf.Variable 'decoder/previous_decoder/rnn/gru_cell/candidate/bias:0' shape=(200,) dtype=float32_ref>,
 <tf.Variable 'decoder/next_decoder/rnn/gru_cell/gates/kernel:0' shape=(400, 400) dtype=float32_ref>,
 <tf.Variable 'decoder/next_decoder/rnn/gru_cell/gates/bias:0' shape=(400,) dtype=float32_ref>,
 <tf.Variable 'decoder/next_decoder/rnn/gru_cell/candidate/kernel:0' shape=(400, 200) dtype=float32_ref>,
 <tf.Variable 'decoder/next_decoder/rnn/gru_cell/candidate/bias:0' shape=(200,) dtype=float32_ref>,
 <tf.Variable 'global_step:0' shape=() dtype=int32_ref>]

In my training phrase, I have a data array whose shape is (164652, 3, 30), namely sample_size x 3 x time_step, the 3 here means the previous sentence, current sentence and next sentence. The size of this training data is about 57Mb and is stored in a loader. Then I use write a generator function to get the sentences, looks like

def iter_batches(self, batch_size=128, time_major=True, shuffle=True):

    num_samples = len(self._sentences)
    if shuffle:
        samples = self._sentences[np.random.permutation(num_samples)]
    else:
        samples = self._sentences

    batch_start = 0
    while batch_start < num_samples:
        batch = samples[batch_start:batch_start + batch_size]

        lens = (batch != self._vocab[self._vocab.pad_token]).sum(axis=2)
        y, x, z = batch[:, 0, :], batch[:, 1, :], batch[:, 2, :]
        if time_major:
            yield (y.T, lens[:, 0]), (x.T, lens[:, 1]), (z.T, lens[:, 2])
        else:
            yield (y, lens[:, 0]), (x, lens[:, 1]), (z, lens[:, 2])
        batch_start += batch_size

The training loop looks like

for epoch in num_epochs:
    batches = loader.iter_batches(batch_size=args.batch_size)
    try:
        (y, y_lens), (x, x_lens), (z, z_lens) =  next(batches)
        _, summaries, loss_val = sess.run(
        [train_op, train_summary_op, st.loss],
        feed_dict={
            st.inputs: x,
            st.sequence_length: x_lens,
            st.previous_targets: y,
            st.previous_target_lengths: y_lens,
            st.next_targets: z,
            st.next_target_lengths: z_lens
        })
    except StopIteraton:
        ...

Then I got a OOM. If I comment out the whole try body (no to feed data), the script run just fine.

I have no idea why I got OOM in such a small data scale. Using nvidia-smi I always got

Wed Sep  6 12:03:37 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.59                 Driver Version: 384.59                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 108...  Off  | 00000000:02:00.0 Off |                  N/A |
|  0%   44C    P2    60W / 275W |  10623MiB / 11172MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 108...  Off  | 00000000:03:00.0 Off |                  N/A |
|  0%   43C    P2    62W / 275W |  10621MiB / 11171MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0     32748    C   python3                                      10613MiB |
|    1     32748    C   python3                                      10611MiB |
+-----------------------------------------------------------------------------+

I can't see the actual GPU usage of my script since tensorflow always steals all memory at the beginning. And the actual problem here is I don't know how to debug this.

I've read some posts about OOM on StackOverflow. Most of them happened when feeding a large test set data to the model and feeding the data by small batches can avoid the problem. But I don't why see such a small data and param combination sucks in my 11Gb 1080Ti, since the error it just try to allocate a matrix sized [3840 x 155229]. (The output matrix of the decoder, 3840 = 30(time_steps) x 128(batch_size), 155229 is vocab_size).

2017-09-06 12:14:45.787566: W tensorflow/core/common_runtime/bfc_allocator.cc:277] ********************************************************************************************xxxxxxxx
2017-09-06 12:14:45.787597: W tensorflow/core/framework/op_kernel.cc:1158] Resource exhausted: OOM when allocating tensor with shape[3840,155229]
2017-09-06 12:14:45.788735: W tensorflow/core/framework/op_kernel.cc:1158] Resource exhausted: OOM when allocating tensor with shape[3840,155229]
     [[Node: decoder/previous_decoder/Add = Add[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](decoder/previous_decoder/MatMul, decoder/biases/read)]]
2017-09-06 12:14:45.790453: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:247] PoolAllocator: After 2857 get requests, put_count=2078 evicted_count=1000 eviction_rate=0.481232 and unsatisfied allocation rate=0.657683
2017-09-06 12:14:45.790482: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:259] Raising pool_size_limit_ from 100 to 110
Traceback (most recent call last):
  File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 1139, in _do_call
    return fn(*args)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 1121, in _run_fn
    status, run_metadata)
  File "/usr/lib/python3.6/contextlib.py", line 88, in __exit__
    next(self.gen)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
    pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[3840,155229]
     [[Node: decoder/previous_decoder/Add = Add[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](decoder/previous_decoder/MatMul, decoder/biases/read)]]
     [[Node: GradientDescent/update/_146 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_2166_GradientDescent/update", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

During handling of the above exception, another exception occurred:

Any help will be appreciated. Thanks in advance.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Let's divide the issues one by one:

About tensorflow to allocate all memory in advance, you can use following code snippet to let tensorflow allocate memory whenever it is needed. So that you can understand how the things are going.

gpu_options = tf.GPUOptions(allow_growth=True)
session = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))

This works equally with tf.Session() instead of tf.InteractiveSession() if you prefer.

Second thing about the sizes, As there is no information about your network size, we cannot estimate what is going wrong. However, you can alternatively debug step by step all the network. For example, create a network only with one layer, get its output, create session and feed values once and visualize how much memory you consume. Iterate this debugging session until you see the point where you are going out of memory.

Please be aware that 3840 x 155229 output is really, REALLY a big output. It means ~600M neurons, and ~2.22GB per one layer only. If you have any similar size layers, all of them will add up to fill your GPU memory pretty fast.

Also, this is only for forward direction, if you are using this layer for training, the back propagation and layers added by optimizer will multiply this size by 2. So, for training you consume ~5 GB just for output layer.

I suggest you to revise your network and try to reduce batch size / parameter counts to fit your model to GPU


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...