Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
585 views
in Technique[技术] by (71.8m points)

algorithm - When is doubly linked list more efficient than singly linked list?

In an interview today I got asked the question.

Apart from answering reversing the list and both forward and backward traversal there was something "fundamental" in it that the interviewer kept stressing. I gave up and of course after interview did a bit of research. It seems that insertion and deletion are more efficient in doubly linked list than singly linked list. I am not quite sure how it can be more efficient for a doubly linked list since it is obvious that more references are required to change. Can anybody explain the secret behind? I honestly did a quite a bit of research and failed to understand with my main trouble being the fact that a O(n) searching is still needed for the double linked list.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Insertion is clearly less work in a singly-linked list, as long as you are content to always insert at the head or after some known element. (That is, you cannot insert before a known element, but see below.)

Deletion, on the other hand, is trickier because you need to know the element before the element to be deleted.

One way of doing this is to make the delete API work with the predecessor of the element to be deleted. This mirrors the insert API, which takes the element which will be the predecessor of the new element, but it's not very convenient and it's hard to document. It's usually possible, though. Generally speaking, you arrive at an element in a list by traversing the list.

Of course, you could just search the list from the beginning to find the element to be deleted, so that you know what its predecessor was. That assumes that the delete API includes the head of the list, which is also inconvenient. Also, the search is stupidly slow.

The way that hardly anyone uses, but which is actually pretty effective, is to define a singly-linked list iterator to be the pointer to the element preceding the current target of the iterator. This is simple, only one indirection slower than using a pointer directly to the element, and makes both insertion and deletion fast. The downside is that deleting an element may invalidate other iterators to list elements, which is annoying. (It doesn't invalidate the iterator to the element being deleted, which is nice for traversals which delete some elements, but that's not much compensation.)

If deletion is not important, perhaps because the datastructures are immutable, singly-linked lists offer another really useful property: they allow structure-sharing. A singly-linked list can happily be the tail of multiple heads, something which is impossible for a doubly-linked list. For this reason, singly-linked lists have traditionally been the simple datastructure of choice for functional languages.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...