You want the following:
In [20]:
df.groupby(['Name','Type','ID']).count().reset_index()
Out[20]:
Name Type ID Count
0 Book1 ebook 1 2
1 Book2 paper 2 2
2 Book3 paper 3 1
In your case the 'Name', 'Type' and 'ID' cols match in values so we can groupby
on these, call count
and then reset_index
.
An alternative approach would be to add the 'Count' column using transform
and then call drop_duplicates
:
In [25]:
df['Count'] = df.groupby(['Name'])['ID'].transform('count')
df.drop_duplicates()
Out[25]:
Name Type ID Count
0 Book1 ebook 1 2
1 Book2 paper 2 2
2 Book3 paper 3 1
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…