Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
176 views
in Technique[技术] by (71.8m points)

python - How to do product of matrices in PyTorch

In numpy I can do a simple matrix multiplication like this:

a = numpy.arange(2*3).reshape(3,2)
b = numpy.arange(2).reshape(2,1)
print(a)
print(b)
print(a.dot(b))

However, when I am trying this with PyTorch Tensors, this does not work:

a = torch.Tensor([[1, 2, 3], [1, 2, 3]]).view(-1, 2)
b = torch.Tensor([[2, 1]]).view(2, -1)
print(a)
print(a.size())

print(b)
print(b.size())

print(torch.dot(a, b))

This code throws the following error:

RuntimeError: inconsistent tensor size at /Users/soumith/code/builder/wheel/pytorch-src/torch/lib/TH/generic/THTensorMath.c:503

Any ideas how matrix multiplication can be conducted in PyTorch?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You're looking for

torch.mm(a,b)

Note that torch.dot() behaves differently to np.dot(). There's been some discussion about what would be desirable here. Specifically, torch.dot() treats both a and b as 1D vectors (irrespective of their original shape) and computes their inner product. The error is thrown, because this behaviour makes your a a vector of length 6 and your b a vector of length 2; hence their inner product can't be computed. For matrix multiplication in PyTorch, use torch.mm(). Numpy's np.dot() in contrast is more flexible; it computes the inner product for 1D arrays and performs matrix multiplication for 2D arrays.

By popular demand, the function torch.matmul performs matrix multiplications if both arguments are 2D and computes their dot product if both arguments are 1D. For inputs of such dimensions, its behaviour is the same as np.dot. It also lets you do broadcasting or matrix x matrix, matrix x vector and vector x vector operations in batches. For more info, see its docs.

# 1D inputs, same as torch.dot
a = torch.rand(n)
b = torch.rand(n)
torch.matmul(a, b) # torch.Size([])

# 2D inputs, same as torch.mm
a = torch.rand(m, k)
b = torch.rand(k, j)
torch.matmul(a, b) # torch.Size([m, j])

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...