Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
862 views
in Technique[技术] by (71.8m points)

algorithm - Find the largest convex black area in an image

I have an image of which this is a small cut-out:

Image with a lot of white and black pixels

As you can see it are white pixels on a black background. We can draw imaginary lines between these pixels (or better, points). With these lines we can enclose areas.

How can I find the largest convex black area in this image that doesn't contain a white pixel in it?

Here is a small hand-drawn example of what I mean by the largest convex black area:

Small example

P.S.: The image is not noise, it represents the primes below 10000000 ordered horizontally.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Trying to find maximum convex area is a difficult task to do. Wouldn't you just be fine with finding rectangles with maximum area? This problem is much easier and can be solved in O(n) - linear time in number of pixels. The algorithm follows.

Say you want to find largest rectangle of free (white) pixels (Sorry, I have images with different colors - white is equivalent to your black, grey is equivalent to your white).

enter image description here

You can do this very efficiently by two pass linear O(n) time algorithm (n being number of pixels):

1) in a first pass, go by columns, from bottom to top, and for each pixel, denote the number of consecutive pixels available up to this one:

enter image description here

repeat, until:

enter image description here

2) in a second pass, go by rows, read current_number. For each number k keep track of the sums of consecutive numbers that were >= k (i.e. potential rectangles of height k). Close the sums (potential rectangles) for k > current_number and look if the sum (~ rectangle area) is greater than the current maximum - if yes, update the maximum. At the end of each line, close all opened potential rectangles (for all k).

This way you will obtain all maximum rectangles. It is not the same as maximum convex area of course, but probably would give you some hints (some heuristics) on where to look for maximum convex areas.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...