Confusion arises because inline has two effects:
- It tells the compiler that the function code can be expanded where the function is called, instead of effectively being called.
- It tells the compiler that the function definition can be repeated.
Point 1. is "archaic" in the sense that the compiler can in fact do what it likes in order to optimize code. It will always "inline" machine code if it can and find convenient to do and it will never do that if it cannot.
Point 2. is the actual meaning of the term: if you define
(specify the body) a function in the header, since a header can be included in more sources, you must tell the compiler to inform the linker about the definition duplicates, so that they can be merged.
Now, by the language specification, free functions (not defined in class bodies) are by default not defined as inline, so defining in a header a thing like
void myfunc()
{}
if the header is included in more sources, then linked in a same output, the linker will report a multiple definition error, hence the need to define it as
inline void fn()
{}
For class members, the default is the opposite: if you just declare them, they will not be inlined. If you define them, they will be inline.
So a header should look like
//header file
class myclass
{
public:
void fn1()
{} //defined into the class, so inlined by default
void fn2();
};
inline void myclass::fn2()
{} //defined outside the class, so explicit inline is needed
And if myclass::fn2()
definition goes into a proper source, must lose the inline
keyword.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…