Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
190 views
in Technique[技术] by (71.8m points)

python - PCA For categorical features?

In my understanding, I thought PCA can be performed only for continuous features. But while trying to understand the difference between onehot encoding and label encoding came through a post in the following link:

When to use One Hot Encoding vs LabelEncoder vs DictVectorizor?

It states that one hot encoding followed by PCA is a very good method, which basically means PCA is applied for categorical features. Hence confused, please suggest me on the same.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I disagree with the others.

While you can use PCA on binary data (e.g. one-hot encoded data) that does not mean it is a good thing, or it will work very well.

PCA is designed for continuous variables. It tries to minimize variance (=squared deviations). The concept of squared deviations breaks down when you have binary variables.

So yes, you can use PCA. And yes, you get an output. It even is a least-squared output: it's not as if PCA would segfault on such data. It works, but it is just much less meaningful than you'd want it to be; and supposedly less meaningful than e.g. frequent pattern mining.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...