Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
141 views
in Technique[技术] by (71.8m points)

python - what is the difference between Flatten() and GlobalAveragePooling2D() in keras

I want to pass the output of ConvLSTM and Conv2D to a Dense Layer in Keras, what is the difference between using global average pooling and flatten Both is working in my case.

model.add(ConvLSTM2D(filters=256,kernel_size=(3,3)))
model.add(Flatten())
# or model.add(GlobalAveragePooling2D())
model.add(Dense(256,activation='relu'))
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

That both seem to work doesn't mean they do the same.

Flatten will take a tensor of any shape and transform it into a one dimensional tensor (plus the samples dimension) but keeping all values in the tensor. For example a tensor (samples, 10, 20, 1) will be flattened to (samples, 10 * 20 * 1).

GlobalAveragePooling2D does something different. It applies average pooling on the spatial dimensions until each spatial dimension is one, and leaves other dimensions unchanged. In this case values are not kept as they are averaged. For example a tensor (samples, 10, 20, 1) would be output as (samples, 1, 1, 1), assuming the 2nd and 3rd dimensions were spatial (channels last).


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...