Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
974 views
in Technique[技术] by (71.8m points)

arrays - Number of subarrays divisible by k

I had the following question in an interview and, in spite of the fact that I gave a working implementation, it wasn't efficient enough.

A slice of array A is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. A slice (P, Q) of array A is divisible by K if the number A[P] + A[P+1] + ... + A[Q?1] + A[Q] is divisible by K.

The function I was asked to write, had to return the number of slices divisible by K. The expected time complexity was O(max(N, K)) and space complexity was O(K).

My solution was the simplest, one loop inside another and check every slice: O(n^2)

I have been thinking but I really can't figure out how can I do it in O(max(N, K)).

It may be a variant of the subset sum problem, but I don't know how to count every subarray.

EDIT: Elements in array could be negatives. Here is an example:

A = {4, 5, 0, -2, -3, 1}, K = 5

Function must return 7, because there are 7 subarrays which sums are divisible by 5
{4, 5, 0, -2, -3, 1}
{5}
{5, 0}
{5, 0, -2, -3}
{0}
{0, -2, -3}
{-2, -3}
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

As you are only interested in numbers divisible by K, you can do all computations modulo K. Consider the cumulative sum array S such that S[i] = S[0] + S[1] + ... + S[i]. Then (P, Q) is a slice divisible by K iff S[P] = S[Q] (remember we do all computations modulo K). So you just have to count for each possible value of [0 ,..., K-1] how many times it appears in S.

Here is some pseudocode:

B = new array( K )
B[0]++
s = 0
for i = 0 to N - 1
  s = ( s + A[i] ) % K
  B[s]++
ans = 0
for i = 0 to K - 1
  ans = ans + B[i] * ( B[i] - 1 ) / 2

Once you know that they are x cells in S that have value i, you want to count the number of slices the start in a cell with value i and ends in a cell with value i, this number is x ( x - 1 ) / 2. To solve edge problems, we add one cell with value 0.

What does x ( x - 1 ) / 2 stands for: Let's assume our array is [4, 5, 0] and frequency of 4 as prefix sum is x, which is 3 in this case. Now we can conclude from value of x, that there are at least x-1 numbers which are either divisible by k or have mod k equals to 0. Now total possible sub arrays out of these x-1 numbers are 1 + 2 + 3 ... + ( x - 1 ) which is ( ( x - 1 ) * ( ( x - 1 ) + 1 ) / 2 . (Standard formula for summation from 1 to N where N stands for ( x - 1 ).


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...