I would like to build on Tobias Schnek's answer as well as answering the original question: how to get FLOP from a pb
file.
Running the first snippet of code from Tobias answer with TensorFlow 1.6.0
g = tf.Graph()
run_meta = tf.RunMetadata()
with g.as_default():
A = tf.Variable(tf.random_normal([25,16]))
B = tf.Variable(tf.random_normal([16,9]))
C = tf.matmul(A,B)
opts = tf.profiler.ProfileOptionBuilder.float_operation()
flops = tf.profiler.profile(g, run_meta=run_meta, cmd='op', options=opts)
if flops is not None:
print('Flops should be ~',2*25*16*9)
print('TF stats gives',flops.total_float_ops)
We get the following ouput:
Flops should be ~ 7200
TF stats gives 8288
So, why do we get 8288
instead of the expected result 7200=2*25*16*9
[a]? The answer is in the way the tensors A
and B
are initialised. Initialising with a Gaussian distribution costs some FLOP. Changing the definition of A
and B
by
A = tf.Variable(initial_value=tf.zeros([25, 16]))
B = tf.Variable(initial_value=tf.zeros([16, 9]))
gives the expected output 7200
.
Usually, a network's variables are initialised with Gaussian distributions among other schemes. Most of the time, we are not interested by the initialisation FLOP as they are done once during initialisation and do not happen during the training nor the inference. So, how could one get the exact number of FLOP disregarding the initialisation FLOP?
Freeze the graph with a pb
. Calculating the FLOP from a pb
file was, actually, the OP's use case.
The following snippet illustrates this:
import tensorflow as tf
from tensorflow.python.framework import graph_util
def load_pb(pb):
with tf.gfile.GFile(pb, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name='')
return graph
# ***** (1) Create Graph *****
g = tf.Graph()
sess = tf.Session(graph=g)
with g.as_default():
A = tf.Variable(initial_value=tf.random_normal([25, 16]))
B = tf.Variable(initial_value=tf.random_normal([16, 9]))
C = tf.matmul(A, B, name='output')
sess.run(tf.global_variables_initializer())
flops = tf.profiler.profile(g, options = tf.profiler.ProfileOptionBuilder.float_operation())
print('FLOP before freezing', flops.total_float_ops)
# *****************************
# ***** (2) freeze graph *****
output_graph_def = graph_util.convert_variables_to_constants(sess, g.as_graph_def(), ['output'])
with tf.gfile.GFile('graph.pb', "wb") as f:
f.write(output_graph_def.SerializeToString())
# *****************************
# ***** (3) Load frozen graph *****
g2 = load_pb('./graph.pb')
with g2.as_default():
flops = tf.profiler.profile(g2, options = tf.profiler.ProfileOptionBuilder.float_operation())
print('FLOP after freezing', flops.total_float_ops)
outputs
FLOP before freezing 8288
FLOP after freezing 7200
[a] Usually the FLOP of a matrix multiplication are mq(2p -1) for the product AB where A[m, p]
and B[p, q]
but TensorFlow returns 2mpq for some reason. An issue has been opened to understand why.