scipy.optmize.curve_fit
uses standard non-linear least squares optimization and therefore only minimizes the deviation in the response variables. If you want to have an error in the independent variable to be considered you can try scipy.odr
which uses orthogonal distance regression. As its name suggests it minimizes in both independent and dependent variables.
Have a look at the sample below. The fit_type
parameter determines whether scipy.odr
does full ODR (fit_type=0
) or least squares optimization (fit_type=2
).
EDIT
Although the example worked it did not make much sense, since the y data was calculated on the noisy x data, which just resulted in an unequally spaced indepenent variable. I updated the sample which now also shows how to use RealData
which allows for specifying the standard error of the data instead of the weights.
from scipy.odr import ODR, Model, Data, RealData
import numpy as np
from pylab import *
def func(beta, x):
y = beta[0]+beta[1]*x+beta[2]*x**3
return y
#generate data
x = np.linspace(-3,2,100)
y = func([-2.3,7.0,-4.0], x)
# add some noise
x += np.random.normal(scale=0.3, size=100)
y += np.random.normal(scale=0.1, size=100)
data = RealData(x, y, 0.3, 0.1)
model = Model(func)
odr = ODR(data, model, [1,0,0])
odr.set_job(fit_type=2)
output = odr.run()
xn = np.linspace(-3,2,50)
yn = func(output.beta, xn)
hold(True)
plot(x,y,'ro')
plot(xn,yn,'k-',label='leastsq')
odr.set_job(fit_type=0)
output = odr.run()
yn = func(output.beta, xn)
plot(xn,yn,'g-',label='odr')
legend(loc=0)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…