Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
846 views
in Technique[技术] by (71.8m points)

python - pandas dataframe: loc vs query performance

I have 2 dataframes in python that I would like to query for data.

  • DF1: 4M records x 3 columns. The query function seams more efficient than the loc function.

  • DF2: 2K records x 6 columns. The loc function seams much more efficient than the query function.

Both queries return a single record. The simulation was done by running the same operation in a loop 10K times.

Running python 2.7 and pandas 0.16.0

Any recommendations to improve the query speed?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

For improve performance is possible use numexpr:

import numexpr

np.random.seed(125)
N = 40000000
df = pd.DataFrame({'A':np.random.randint(10, size=N)})

def ne(df):
    x = df.A.values
    return df[numexpr.evaluate('(x > 5)')]
print (ne(df))

In [138]: %timeit (ne(df))
1 loop, best of 3: 494 ms per loop

In [139]: %timeit df[df.A > 5]
1 loop, best of 3: 536 ms per loop

In [140]: %timeit df.query('A > 5')
1 loop, best of 3: 781 ms per loop

In [141]: %timeit df[df.eval('A > 5')]
1 loop, best of 3: 770 ms per loop

import numexpr
np.random.seed(125)

def ne(x):
    x = x.A.values
    return x[numexpr.evaluate('(x > 5)')]

def be(x):
    return x[x.A > 5]

def q(x):
    return x.query('A > 5')

def ev(x):
    return x[x.eval('A > 5')]


def make_df(n):
    df = pd.DataFrame(np.random.randint(10, size=n), columns=['A'])
    return df


perfplot.show(
    setup=make_df,
    kernels=[ne, be, q, ev],
    n_range=[2**k for k in range(2, 25)],
    logx=True,
    logy=True,
    equality_check=False,  
    xlabel='len(df)')

graph

Edit:

Graph with modified ne and improved be:

def ne(x):
    return x[numexpr.evaluate('(x > 5)')]

def bex(x):
    return x[x.A.values > 5]

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...