Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
543 views
in Technique[技术] by (71.8m points)

python - TFIDF for Large Dataset

I have a corpus which has around 8 million news articles, I need to get the TFIDF representation of them as a sparse matrix. I have been able to do that using scikit-learn for relatively lower number of samples, but I believe it can't be used for such a huge dataset as it loads the input matrix into memory first and that's an expensive process.

Does anyone know, what would be the best way to extract out the TFIDF vectors for large datasets?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Gensim has an efficient tf-idf model and does not need to have everything in memory at once.

Your corpus simply needs to be an iterable, so it does not need to have the whole corpus in memory at a time.

The make_wiki script runs over Wikipedia in about 50m on a laptop according to the comments.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...