Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
886 views
in Technique[技术] by (71.8m points)

math - Converting a python numeric expression to LaTeX

I need to convert strings with valid python syntax such as:

'1+2**(x+y)'

and get the equivalent LaTeX:

$1+2^{x+y}$

I have tried sympy's latex function but it processes actual expression, rather than the string form of it:

>>> latex(1+2**(x+y))
'$1 + 2^{x + y}$'
>>> latex('1+2**(x+y)')
'$1+2**(x+y)$'

but to even do this, it requires x and y to be declared as type "symbols".

I want something more straight forward, preferably doable with the parser from the compiler module.

>>> compiler.parse('1+2**(x+y)')
Module(None, Stmt([Discard(Add((Const(1), Power((Const(2), Add((Name('x'), Name('y'))))))))]))

Last but not least, the why: I need to generate those latex snipptes so that I can show them in a webpage with mathjax.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here's a rather long but still incomplete method that doesn't involve sympy in any way. It's enough to cover the example of (-b-sqrt(b**2-4*a*c))/(2*a) which gets translated to frac{- b - sqrt{b^{2} - 4 ; a ; c}}{2 ; a} and renders as

alt text

It basically creates the AST and walks it producing the latex math the corresponds to the AST nodes. What's there should give enough of an idea how to extend it in the places it's lacking.


import ast

class LatexVisitor(ast.NodeVisitor):

    def prec(self, n):
        return getattr(self, 'prec_'+n.__class__.__name__, getattr(self, 'generic_prec'))(n)

    def visit_Call(self, n):
        func = self.visit(n.func)
        args = ', '.join(map(self.visit, n.args))
        if func == 'sqrt':
            return 'sqrt{%s}' % args
        else:
            return r'operatorname{%s}left(%s
ight)' % (func, args)

    def prec_Call(self, n):
        return 1000

    def visit_Name(self, n):
        return n.id

    def prec_Name(self, n):
        return 1000

    def visit_UnaryOp(self, n):
        if self.prec(n.op) > self.prec(n.operand):
            return r'%s left(%s
ight)' % (self.visit(n.op), self.visit(n.operand))
        else:
            return r'%s %s' % (self.visit(n.op), self.visit(n.operand))

    def prec_UnaryOp(self, n):
        return self.prec(n.op)

    def visit_BinOp(self, n):
        if self.prec(n.op) > self.prec(n.left):
            left = r'left(%s
ight)' % self.visit(n.left)
        else:
            left = self.visit(n.left)
        if self.prec(n.op) > self.prec(n.right):
            right = r'left(%s
ight)' % self.visit(n.right)
        else:
            right = self.visit(n.right)
        if isinstance(n.op, ast.Div):
            return r'frac{%s}{%s}' % (self.visit(n.left), self.visit(n.right))
        elif isinstance(n.op, ast.FloorDiv):
            return r'leftlfloorfrac{%s}{%s}
ight
floor' % (self.visit(n.left), self.visit(n.right))
        elif isinstance(n.op, ast.Pow):
            return r'%s^{%s}' % (left, self.visit(n.right))
        else:
            return r'%s %s %s' % (left, self.visit(n.op), right)

    def prec_BinOp(self, n):
        return self.prec(n.op)

    def visit_Sub(self, n):
        return '-'

    def prec_Sub(self, n):
        return 300

    def visit_Add(self, n):
        return '+'

    def prec_Add(self, n):
        return 300

    def visit_Mult(self, n):
        return '\;'

    def prec_Mult(self, n):
        return 400

    def visit_Mod(self, n):
        return '\bmod'

    def prec_Mod(self, n):
        return 500

    def prec_Pow(self, n):
        return 700

    def prec_Div(self, n):
        return 400

    def prec_FloorDiv(self, n):
        return 400

    def visit_LShift(self, n):
        return '\operatorname{shiftLeft}'

    def visit_RShift(self, n):
        return '\operatorname{shiftRight}'

    def visit_BitOr(self, n):
        return '\operatorname{or}'

    def visit_BitXor(self, n):
        return '\operatorname{xor}'

    def visit_BitAnd(self, n):
        return '\operatorname{and}'

    def visit_Invert(self, n):
        return '\operatorname{invert}'

    def prec_Invert(self, n):
        return 800

    def visit_Not(self, n):
        return '\neg'

    def prec_Not(self, n):
        return 800

    def visit_UAdd(self, n):
        return '+'

    def prec_UAdd(self, n):
        return 800

    def visit_USub(self, n):
        return '-'

    def prec_USub(self, n):
        return 800
    def visit_Num(self, n):
        return str(n.n)

    def prec_Num(self, n):
        return 1000

    def generic_visit(self, n):
        if isinstance(n, ast.AST):
            return r'' % (n.__class__.__name__, ', '.join(map(self.visit, [getattr(n, f) for f in n._fields])))
        else:
            return str(n)

    def generic_prec(self, n):
        return 0

def py2tex(expr):
    pt = ast.parse(expr)
    return LatexVisitor().visit(pt.body[0].value)


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...