Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
175 views
in Technique[技术] by (71.8m points)

python - How to pivot on multiple columns in Spark SQL?

I need to pivot more than one column in a pyspark dataframe. Sample dataframe,

 >>> d = [(100,1,23,10),(100,2,45,11),(100,3,67,12),(100,4,78,13),(101,1,23,10),(101,2,45,13),(101,3,67,14),(101,4,78,15),(102,1,23,10),(102,2,45,11),(102,3,67,16),(102,4,78,18)]
>>> mydf = spark.createDataFrame(d,['id','day','price','units'])
>>> mydf.show()
+---+---+-----+-----+
| id|day|price|units|
+---+---+-----+-----+
|100|  1|   23|   10|
|100|  2|   45|   11|
|100|  3|   67|   12|
|100|  4|   78|   13|
|101|  1|   23|   10|
|101|  2|   45|   13|
|101|  3|   67|   14|
|101|  4|   78|   15|
|102|  1|   23|   10|
|102|  2|   45|   11|
|102|  3|   67|   16|
|102|  4|   78|   18|
+---+---+-----+-----+

Now,if I need to get price column into a row for each id based on day, then I can use pivot method as,

>>> pvtdf = mydf.withColumn('combcol',F.concat(F.lit('price_'),mydf['day'])).groupby('id').pivot('combcol').agg(F.first('price'))
>>> pvtdf.show()
+---+-------+-------+-------+-------+
| id|price_1|price_2|price_3|price_4|
+---+-------+-------+-------+-------+
|100|     23|     45|     67|     78|
|101|     23|     45|     67|     78|
|102|     23|     45|     67|     78|
+---+-------+-------+-------+-------+

so when I need units column as well to be transposed as price, either I got to create one more dataframe as above for units and then join both using id.But, when I have more columns as such, I tried a function to do it,

>>> def pivot_udf(df,*cols):
...     mydf = df.select('id').drop_duplicates()
...     for c in cols:
...        mydf = mydf.join(df.withColumn('combcol',F.concat(F.lit('{}_'.format(c)),df['day'])).groupby('id').pivot('combcol').agg(F.first(c)),'id')
...     return mydf
...
>>> pivot_udf(mydf,'price','units').show()
+---+-------+-------+-------+-------+-------+-------+-------+-------+
| id|price_1|price_2|price_3|price_4|units_1|units_2|units_3|units_4|
+---+-------+-------+-------+-------+-------+-------+-------+-------+
|100|     23|     45|     67|     78|     10|     11|     12|     13|
|101|     23|     45|     67|     78|     10|     13|     14|     15|
|102|     23|     45|     67|     78|     10|     11|     16|     18|
+---+-------+-------+-------+-------+-------+-------+-------+-------+

Need suggestions on ,if it is good practice to do so and if any other better way of doing it. Thanks in advance!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here's a non-UDF way involving a single pivot (hence, just a single column scan to identify all the unique dates).

dff = mydf.groupBy('id').pivot('day').agg(F.first('price').alias('price'),F.first('units').alias('unit'))

Here's the result (apologies for the non-matching ordering and naming):

+---+-------+------+-------+------+-------+------+-------+------+               
| id|1_price|1_unit|2_price|2_unit|3_price|3_unit|4_price|4_unit|
+---+-------+------+-------+------+-------+------+-------+------+
|100|     23|    10|     45|    11|     67|    12|     78|    13|
|101|     23|    10|     45|    13|     67|    14|     78|    15|
|102|     23|    10|     45|    11|     67|    16|     78|    18|
+---+-------+------+-------+------+-------+------+-------+------+

We just aggregate both on the price and the unit column after pivoting on the day.

If naming required as in question,

dff.select([F.col(c).name('_'.join(x for x in c.split('_')[::-1])) for c in dff.columns]).show()

+---+-------+------+-------+------+-------+------+-------+------+
| id|price_1|unit_1|price_2|unit_2|price_3|unit_3|price_4|unit_4|
+---+-------+------+-------+------+-------+------+-------+------+
|100|     23|    10|     45|    11|     67|    12|     78|    13|
|101|     23|    10|     45|    13|     67|    14|     78|    15|
|102|     23|    10|     45|    11|     67|    16|     78|    18|
+---+-------+------+-------+------+-------+------+-------+------+

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...