Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
178 views
in Technique[技术] by (71.8m points)

python - Efficiently replace values from a column to another column Pandas DataFrame

I have a Pandas DataFrame like this:

   col1 col2 col3
1   0.2  0.3  0.3
2   0.2  0.3  0.3
3     0  0.4  0.4
4     0    0  0.3
5     0    0    0
6   0.1  0.4  0.4

I want to replace the col1 values with the values in the second column (col2) only if col1 values are equal to 0, and after (for the zero values remaining), do it again but with the third column (col3). The Desired Result is the next one:

   col1 col2 col3
1   0.2  0.3  0.3
2   0.2  0.3  0.3
3   0.4  0.4  0.4
4   0.3    0  0.3
5     0    0    0
6   0.1  0.4  0.4

I did it using the pd.replace function, but it seems too slow.. I think must be a faster way to accomplish that.

df.col1.replace(0,df.col2,inplace=True)
df.col1.replace(0,df.col3,inplace=True)

is there a faster way to do that?, using some other function instead of the pd.replace function?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Using np.where is faster. Using a similar pattern as you used with replace:

df['col1'] = np.where(df['col1'] == 0, df['col2'], df['col1'])
df['col1'] = np.where(df['col1'] == 0, df['col3'], df['col1'])

However, using a nested np.where is slightly faster:

df['col1'] = np.where(df['col1'] == 0, 
                      np.where(df['col2'] == 0, df['col3'], df['col2']),
                      df['col1'])

Timings

Using the following setup to produce a larger sample DataFrame and timing functions:

df = pd.concat([df]*10**4, ignore_index=True)

def root_nested(df):
    df['col1'] = np.where(df['col1'] == 0, np.where(df['col2'] == 0, df['col3'], df['col2']), df['col1'])
    return df

def root_split(df):
    df['col1'] = np.where(df['col1'] == 0, df['col2'], df['col1'])
    df['col1'] = np.where(df['col1'] == 0, df['col3'], df['col1'])
    return df

def pir2(df):
    df['col1'] = df.where(df.ne(0), np.nan).bfill(axis=1).col1.fillna(0)
    return df

def pir2_2(df):
    slc = (df.values != 0).argmax(axis=1)
    return df.values[np.arange(slc.shape[0]), slc]

def andrew(df):
    df.col1[df.col1 == 0] = df.col2
    df.col1[df.col1 == 0] = df.col3
    return df

def pablo(df):
    df['col1'] = df['col1'].replace(0,df['col2'])
    df['col1'] = df['col1'].replace(0,df['col3'])
    return df

I get the following timings:

%timeit root_nested(df.copy())
100 loops, best of 3: 2.25 ms per loop

%timeit root_split(df.copy())
100 loops, best of 3: 2.62 ms per loop

%timeit pir2(df.copy())
100 loops, best of 3: 6.25 ms per loop

%timeit pir2_2(df.copy())
1 loop, best of 3: 2.4 ms per loop

%timeit andrew(df.copy())
100 loops, best of 3: 8.55 ms per loop

I tried timing your method, but it's been running for multiple minutes without completing. As a comparison, timing your method on just the 6 row example DataFrame (not the much larger one tested above) took 12.8 ms.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...