I want to train a deep network starting with the following layer:
model = Sequential()
model.add(Conv2D(32, 3, 3, input_shape=(32, 32, 3)))
using
history = model.fit_generator(get_training_data(),
samples_per_epoch=1, nb_epoch=1,nb_val_samples=5,
verbose=1,validation_data=get_validation_data()
with the following generator:
def get_training_data(self):
while 1:
for i in range(1,5):
image = self.X_train[i]
label = self.Y_train[i]
yield (image,label)
(validation generator looks similar).
During training, I get the error:
Error when checking model input: expected convolution2d_input_1 to have 4
dimensions, but got array with shape (32, 32, 3)
How can that be, with a first layer
model.add(Conv2D(32, 3, 3, input_shape=(32, 32, 3)))
?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…