I have stock price data that is stored in a pandas DataFrame as shown below (actually it was in a panel, but I converted it to a DataFrame)
date ticker close tsr
0 2013-03-28 abc 22.81 1.000439
1 2013-03-28 def 94.21 1.006947
2 2013-03-28 ghi 95.84 1.014180
3 2013-03-28 jkl 31.80 1.000000
4 2013-03-28 mno 32.10 1.003125
...many more rows
I want to save this in a Django model, which looks like this (matches the column names):
class HistoricalPrices(models.Model):
ticker = models.CharField(max_length=10)
date = models.DateField()
tsr = models.DecimalField()
close = models.DecimalField()
The best I've come up so far is using this to save it, where df is my DataFrame:
entries = []
for e in df.T.to_dict().values():
entries.append(HistoricalPrices(**e))
HistoricalPrices.objects.bulk_create(entries)
Is there a better way to save this?
I've looked at django-pandas, but looks like it just reads from the DB.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…