Dealing with processing large matrices (NxM with 1K <= N <= 20K & 10K <= M <= 200K), I often need to pass Numpy matrices to C++ through Cython to get the job done and this works as expected & without copying.
However, there are times when I need to initiate and preprocess a matrix in C++ and pass it to Numpy (Python 3.6). Let's assume the matrices are linearized (so the size is N*M and it's a 1D matrix - col/row major doesn't matter here). Following the information in here: exposing C-computed arrays in Python without data copies & modifying it for C++ compatibility, I'm able to pass C++ array.
The problem is if I want to use std vector instead of initiating array, I'd get Segmentation fault. For example, considering the following files:
fast.h
#include <iostream>
#include <vector>
using std::cout; using std::endl; using std::vector;
int* doit(int length);
fast.cpp
#include "fast.h"
int* doit(int length) {
// Something really heavy
cout << "C++: doing it fast " << endl;
vector<int> WhyNot;
// Heavy stuff - like reading a big file and preprocessing it
for(int i=0; i<length; ++i)
WhyNot.push_back(i); // heavy stuff
cout << "C++: did it really fast" << endl;
return &WhyNot[0]; // or WhyNot.data()
}
faster.pyx
cimport numpy as np
import numpy as np
from libc.stdlib cimport free
from cpython cimport PyObject, Py_INCREF
np.import_array()
cdef extern from "fast.h":
int* doit(int length)
cdef class ArrayWrapper:
cdef void* data_ptr
cdef int size
cdef set_data(self, int size, void* data_ptr):
self.data_ptr = data_ptr
self.size = size
def __array__(self):
print ("Cython: __array__ called")
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> self.size
ndarray = np.PyArray_SimpleNewFromData(1, shape,
np.NPY_INT, self.data_ptr)
print ("Cython: __array__ done")
return ndarray
def __dealloc__(self):
print("Cython: __dealloc__ called")
free(<void*>self.data_ptr)
print("Cython: __dealloc__ done")
def faster(length):
print("Cython: calling C++ function to do it")
cdef int *array = doit(length)
print("Cython: back from C++")
cdef np.ndarray ndarray
array_wrapper = ArrayWrapper()
array_wrapper.set_data(length, <void*> array)
print("Ctyhon: array wrapper set")
ndarray = np.array(array_wrapper, copy=False)
ndarray.base = <PyObject*> array_wrapper
Py_INCREF(array_wrapper)
print("Cython: all done - returning")
return ndarray
setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy
ext_modules = [Extension(
"faster",
["faster.pyx", "fast.cpp"],
language='c++',
extra_compile_args=["-std=c++11"],
extra_link_args=["-std=c++11"]
)]
setup(
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules,
include_dirs=[numpy.get_include()]
)
If you build this with
python setup.py build_ext --inplace
and run Python 3.6 interpreter, if you enter the following you'd get seg fault after a couple of tries.
>>> from faster import faster
>>> a = faster(1000000)
Cython: calling C++ function to do it
C++: doing it fast
C++: did it really fast
Cython: back from C++
Ctyhon: array wrapper set
Cython: __array__ called
Cython: __array__ done
Cython: all done - returning
>>> a = faster(1000000)
Cython: calling C++ function to do it
C++: doing it fast
C++: did it really fast
Cython: back from C++
Ctyhon: array wrapper set
Cython: __array__ called
Cython: __array__ done
Cython: all done - returning
Cython: __dealloc__ called
Segmentation fault (core dumped)
Couple of things to note:
- If you use array instead of vector (in fast.cpp) this would work like a charm!
- If you call
faster(1000000)
and put the result into something other than variable a
this would work.
If you enter smaller number like faster(10)
you'd get a more detailed info like:
Cython: calling C++ function to do it
C++: doing it fast
C++: did it really fast
Cython: back from C++
Ctyhon: array wrapper set
Cython: __array__ called
Cython: __array__ done
Cython: all done - returning
Cython: __dealloc__ called <--- Perhaps this happened too early or late?
*** Error in 'python': double free or corruption (fasttop): 0x0000000001365570 ***
======= Backtrace: =========
More info here ....
It's really puzzling that why this doesn't happen with arrays? No matter what!
I make use of vectors a lot and would love to be able to use them in these scenarios.
See Question&Answers more detail:
os