Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
401 views
in Technique[技术] by (71.8m points)

python - Adding y=x to a matplotlib scatter plot if I haven't kept track of all the data points that went in

Here's some code that does scatter plot of a number of different series using matplotlib and then adds the line y=x:

import numpy as np, matplotlib.pyplot as plt, matplotlib.cm as cm, pylab

nseries = 10
colors = cm.rainbow(np.linspace(0, 1, nseries))

all_x = []
all_y = []
for i in range(nseries):
    x = np.random.random(12)+i/10.0
    y = np.random.random(12)+i/5.0
    plt.scatter(x, y, color=colors[i])
    all_x.extend(x)
    all_y.extend(y)

# Could I somehow do the next part (add identity_line) if I haven't been keeping track of all the x and y values I've seen?
identity_line = np.linspace(max(min(all_x), min(all_y)),
                            min(max(all_x), max(all_y)))
plt.plot(identity_line, identity_line, color="black", linestyle="dashed", linewidth=3.0)

plt.show()

In order to achieve this I've had to keep track of all the x and y values that went into the scatter plot so that I know where identity_line should start and end. Is there a way I can get y=x to show up even if I don't have a list of all the points that I plotted? I would think that something in matplotlib can give me a list of all the points after the fact, but I haven't been able to figure out how to get that list.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You don't need to know anything about your data per se. You can get away with what your matplotlib Axes object will tell you about the data.

See below:

import numpy as np
import matplotlib.pyplot as plt

# random data 
N = 37
x = np.random.normal(loc=3.5, scale=1.25, size=N)
y = np.random.normal(loc=3.4, scale=1.5, size=N)
c = x**2 + y**2

# now sort it just to make it look like it's related
x.sort()
y.sort()

fig, ax = plt.subplots()
ax.scatter(x, y, s=25, c=c, cmap=plt.cm.coolwarm, zorder=10)

Here's the good part:

lims = [
    np.min([ax.get_xlim(), ax.get_ylim()]),  # min of both axes
    np.max([ax.get_xlim(), ax.get_ylim()]),  # max of both axes
]

# now plot both limits against eachother
ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.set_aspect('equal')
ax.set_xlim(lims)
ax.set_ylim(lims)
fig.savefig('/Users/paul/Desktop/so.png', dpi=300)

Et voilà

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...