Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
317 views
in Technique[技术] by (71.8m points)

python - Separate pandas dataframe using sklearn's KFold

I had obtained the index of training set and testing set with code below.

df = pandas.read_pickle(filepath + filename)
kf = KFold(n_splits = n_splits, shuffle = shuffle, random_state = 
randomState)

result = next(kf.split(df), None)

#train can be accessed with result[0]
#test can be accessed with result[1]

I wonder if there is any faster way to separate them into 2 dataframe respectively with the row indexes I retrieved.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You need DataFrame.iloc for select rows by positions:

Sample:

np.random.seed(100)
df = pd.DataFrame(np.random.random((10,5)), columns=list('ABCDE'))
df.index = df.index * 10
print (df)
           A         B         C         D         E
0   0.543405  0.278369  0.424518  0.844776  0.004719
10  0.121569  0.670749  0.825853  0.136707  0.575093
20  0.891322  0.209202  0.185328  0.108377  0.219697
30  0.978624  0.811683  0.171941  0.816225  0.274074
40  0.431704  0.940030  0.817649  0.336112  0.175410
50  0.372832  0.005689  0.252426  0.795663  0.015255
60  0.598843  0.603805  0.105148  0.381943  0.036476
70  0.890412  0.980921  0.059942  0.890546  0.576901
80  0.742480  0.630184  0.581842  0.020439  0.210027
90  0.544685  0.769115  0.250695  0.285896  0.852395

from sklearn.model_selection import KFold

#added some parameters
kf = KFold(n_splits = 5, shuffle = True, random_state = 2)
result = next(kf.split(df), None)
print (result)
(array([0, 2, 3, 5, 6, 7, 8, 9]), array([1, 4]))

train = df.iloc[result[0]]
test =  df.iloc[result[1]]

print (train)
           A         B         C         D         E
0   0.543405  0.278369  0.424518  0.844776  0.004719
20  0.891322  0.209202  0.185328  0.108377  0.219697
30  0.978624  0.811683  0.171941  0.816225  0.274074
50  0.372832  0.005689  0.252426  0.795663  0.015255
60  0.598843  0.603805  0.105148  0.381943  0.036476
70  0.890412  0.980921  0.059942  0.890546  0.576901
80  0.742480  0.630184  0.581842  0.020439  0.210027
90  0.544685  0.769115  0.250695  0.285896  0.852395

print (test)
           A         B         C         D         E
10  0.121569  0.670749  0.825853  0.136707  0.575093
40  0.431704  0.940030  0.817649  0.336112  0.175410

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...