I will assume each of the n
items can only be used once, and you must maximize your profit.
Original knapsack is dp[i] = best profit you can obtain for weight i
for i = 1 to n do
for w = maxW down to a[i].weight do
if dp[w] < dp[w - a[i].weight] + a[i].gain
dp[w] = dp[w - a[i].weight] + a[i].gain
Now, since we have two knapsacks, we can use dp[i, j] = best profit you can obtain for weight i in knapsack 1 and j in knapsack 2
for i = 1 to n do
for w1 = maxW1 down to a[i].weight do
for w2 = maxW2 down to a[i].weight do
dp[w1, w2] = max
{
dp[w1, w2], <- we already have the best choice for this pair
dp[w1 - a[i].weight, w2] + a[i].gain <- put in knapsack 1
dp[w1, w2 - a[i].weight] + a[i].gain <- put in knapsack 2
}
Time complexity is O(n * maxW1 * maxW2)
, where maxW
is the maximum weight the knapsack can carry. Note that this isn't very efficient if the capacities are large.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…