I believe this does what you are after:
df.groupby(lambda x:x, axis=1).sum()
Alternatively, between 3% and 15% faster depending on the length of the df:
df.groupby(df.columns, axis=1).sum()
EDIT: To extend this beyond sums, use .agg()
(short for .aggregate()
):
df.groupby(df.columns, axis=1).agg(numpy.max)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…