Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
415 views
in Technique[技术] by (71.8m points)

python - Why does keras model predict slower after compile?

prediction speed keras

In theory, the prediction should be constant as the weights have a fixed size. How do I get my speed back after compile (without the need to remove optimizer)?

See associated experiment: https://nbviewer.jupyter.org/github/off99555/TensorFlowExperiments/blob/master/test-prediction-speed-after-compile.ipynb?flush_cache=true

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

UPDATE - 1/15/2020: the current best practice for small batch sizes should be to feed inputs to the model directly - i.e. preds = model(x), and if layers behave differently at train / inference, model(x, training=False). Per latest commit, this is now documented.

I haven't benchmarked these, but per the Git discussion, it's also worth trying predict_on_batch() - especially with improvements in TF 2.1.


ULTIMATE CULPRIT: self._experimental_run_tf_function = True. It's experimental. But it's not actually bad.

To any TensorFlow devs reading: clean up your code. It's a mess. And it violates important coding practices, such as one function does one thing; _process_inputs does a lot more than "process inputs", same for _standardize_user_data. "I'm not paid enough" - but you do pay, in extra time spent understanding your own stuff, and in users filling your Issues page with bugs easier resolved with a clearer code.


SUMMARY: it's only a little slower with compile().

compile() sets an internal flag which assigns a different prediction function to predict. This function constructs a new graph upon each call, slowing it down relative to uncompiled. However, the difference is only pronounced when train time is much shorter than data processing time. If we increase the model size to at least mid-sized, the two become equal. See code at the bottom.

This slight increase in data processing time is more than compensated by amplified graph capability. Since it's more efficient to keep only one model graph around, the one pre-compile is discarded. Nonetheless: if your model is small relative to data, you are better off without compile() for model inference. See my other answer for a workaround.


WHAT SHOULD I DO?

Compare model performance compiled vs uncompiled as I have in code at the bottom.

  • Compiled is faster: run predict on a compiled model.
  • Compiled is slower: run predict on an uncompiled model.

Yes, both are possible, and it will depend on (1) data size; (2) model size; (3) hardware. Code at the bottom actually shows compiled model being faster, but 10 iterations is a small sample. See "workarounds" in my other answer for the "how-to".


DETAILS:

This took a while to debug, but was fun. Below I describe the key culprits I discovered, cite some relevant documentation, and show profiler results that led to the ultimate bottleneck.

(FLAG == self.experimental_run_tf_function, for brevity)

  1. Model by default instantiates with FLAG=False. compile() sets it to True.
  2. predict() involves acquiring the prediction function, func = self._select_training_loop(x)
  3. Without any special kwargs passed to predict and compile, all other flags are such that:
    • (A) FLAG==True --> func = training_v2.Loop()
    • (B) FLAG==False --> func = training_arrays.ArrayLikeTrainingLoop()
  4. From source code docstring, (A) is heavily graph-reliant, uses more distribution strategy, and ops are prone to creating & destroying graph elements, which "may" (do) impact performance.

True culprit: _process_inputs(), accounting for 81% of runtime. Its major component? _create_graph_function(), 72% of runtime. This method does not even exist for (B). Using a mid-sized model, however, _process_inputs comprises less than 1% of runtime. Code at bottom, and profiling results follow.


DATA PROCESSORS:

(A): <class 'tensorflow.python.keras.engine.data_adapter.TensorLikeDataAdapter'>, used in _process_inputs() . Relevant source code

(B): numpy.ndarray, returned by convert_eager_tensors_to_numpy. Relevant source code, and here


MODEL EXECUTION FUNCTION (e.g. predict)

(A): distribution function, and here

(B): distribution function (different), and here


PROFILER: results for code in my other answer, "tiny model", and in this answer, "medium model":

Tiny model: 1000 iterations, compile()

image

Tiny model: 1000 iterations, no compile()

image

Medium model: 10 iterations

image


DOCUMENTATION (indirectly) on effects of compile(): source

Unlike other TensorFlow operations, we don't convert python numerical inputs to tensors. Moreover, a new graph is generated for each distinct python numerical value, for example calling g(2) and g(3) will generate two new graphs

function instantiates a separate graph for every unique set of input shapes and datatypes. For example, the following code snippet will result in three distinct graphs being traced, as each input has a different shape

A single tf.function object might need to map to multiple computation graphs under the hood. This should be visible only as performance (tracing graphs has a nonzero computational and memory cost) but should not affect the correctness of the program


COUNTEREXAMPLE:

from tensorflow.keras.layers import Input, Dense, LSTM, Bidirectional, Conv1D
from tensorflow.keras.layers import Flatten, Dropout
from tensorflow.keras.models import Model
import numpy as np
from time import time

def timeit(func, arg, iterations):
    t0 = time()
    for _ in range(iterations):
        func(arg)
    print("%.4f sec" % (time() - t0))

batch_size = 32
batch_shape = (batch_size, 400, 16)
ipt   = Input(batch_shape=batch_shape)
x     = Bidirectional(LSTM(512, activation='relu', return_sequences=True))(ipt)
x     = LSTM(512, activation='relu', return_sequences=True)(ipt)
x     = Conv1D(128, 400, 1, padding='same')(x)
x     = Flatten()(x)
x     = Dense(256, activation='relu')(x)
x     = Dropout(0.5)(x)
x     = Dense(128, activation='relu')(x)
x     = Dense(64,  activation='relu')(x)
out   = Dense(1,  activation='sigmoid')(x)
model = Model(ipt, out)

X = np.random.randn(*batch_shape)
timeit(model.predict, X, 10)
model.compile('adam', loss='binary_crossentropy')
timeit(model.predict, X, 10)

Outputs:

34.8542 sec
34.7435 sec

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...