#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <signal.h>
#include <stdlib.h>
#include <ucontext.h>
void safe_func(void)
{
puts("Safe now ?");
exit(0); //can't return to main, it's where the segfault occured.
}
void
handler (int cause, siginfo_t * info, void *uap)
{
//For test. Never ever call stdio functions in a signal handler otherwise*/
printf ("SIGSEGV raised at address %p
", info->si_addr);
ucontext_t *context = uap;
/*On my particular system, compiled with gcc -O2, the offending instruction
generated for "*f = 16;" is 6 bytes. Lets try to set the instruction
pointer to the next instruction (general register 14 is EIP, on linux x86) */
context->uc_mcontext.gregs[14] += 6;
//alternativly, try to jump to a "safe place"
//context->uc_mcontext.gregs[14] = (unsigned int)safe_func;
}
int
main (int argc, char *argv[])
{
struct sigaction sa;
sa.sa_sigaction = handler;
int *f = NULL;
sigemptyset (&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
if (sigaction (SIGSEGV, &sa, 0)) {
perror ("sigaction");
exit(1);
}
//cause a segfault
*f = 16;
puts("Still Alive");
return 0;
}
$ ./a.out
SIGSEGV raised at address (nil)
Still Alive
I would beat someone with a bat if I saw something like this in production code though, it's an ugly, for-fun hack. You'll have no idea if the segfault have corrupted some of your data, you'll have no sane way of recovering and know that everything is Ok now, there's no portable way of doing this. The only mildly sane thing you could do is try to log an error (use write() directly, not any of the stdio functions - they're not signal safe) and perhaps restart the program. For those cases you're much better off writing a superwisor process that monitors a child process exit, logs it and starts a new child process.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…