Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
140 views
in Technique[技术] by (71.8m points)

python - dataframe representation of a rolling window

I want a dataframe representation of of a rolling window. Instead of performing some operation on a rolling window, I want a dataframe where the window is represented in another dimension. This could be as a pd.Panel or np.array or a pd.DataFrame with a pd.MultiIndex.

Setup

import pandas as pd
import numpy as np

np.random.seed([3,1415])
df = pd.DataFrame(np.random.rand(10, 3).round(2), 
                  columns=['A', 'B', 'C'],
                  index=list('abcdefghij'))

print df

      A     B     C
a  0.44  0.41  0.46
b  0.47  0.46  0.02
c  0.85  0.82  0.78
d  0.76  0.93  0.83
e  0.88  0.93  0.72
f  0.12  0.15  0.20
g  0.44  0.10  0.28
h  0.61  0.09  0.84
i  0.74  0.87  0.69
j  0.38  0.23  0.44

Expected Output

For a window = 2 I'd expect the result to be.

      0                 1            
      A     B     C     A     B     C
a  0.44  0.41  0.46  0.47  0.46  0.02
b  0.47  0.46  0.02  0.85  0.82  0.78
c  0.85  0.82  0.78  0.76  0.93  0.83
d  0.76  0.93  0.83  0.88  0.93  0.72
e  0.88  0.93  0.72  0.12  0.15  0.20
f  0.12  0.15  0.20  0.44  0.10  0.28
g  0.44  0.10  0.28  0.61  0.09  0.84
h  0.61  0.09  0.84  0.74  0.87  0.69
i  0.74  0.87  0.69  0.38  0.23  0.44

I'm not determined to have the layout presented this way, but this is the information I want. I'm looking for the most efficient way to get at this.

What I've done so far

I've experimented with using shift in varying ways but it feels clunky. This is what I use to produce the output above:

print pd.concat([df, df.shift(-1)], axis=1, keys=[0, 1]).dropna()
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

We could use NumPy to get views into those sliding windows with its esoteric strided tricks. If you are using this new dimension for some reduction like matrix-multiplication, this would be ideal. If for some reason, you want to have a 2D output, we need to use a reshape at the end, which will result in creating a copy though.

Thus, the implementation would look something like this -

from numpy.lib.stride_tricks import as_strided as strided

def get_sliding_window(df, W, return2D=0):
    a = df.values                 
    s0,s1 = a.strides
    m,n = a.shape
    out = strided(a,shape=(m-W+1,W,n),strides=(s0,s0,s1))
    if return2D==1:
        return out.reshape(a.shape[0]-W+1,-1)
    else:
        return out

Sample run for 2D/3D output -

In [68]: df
Out[68]: 
      A     B
0  0.44  0.41
1  0.46  0.47
2  0.46  0.02
3  0.85  0.82
4  0.78  0.76

In [70]: get_sliding_window(df, 3,return2D=1)
Out[70]: 
array([[ 0.44,  0.41,  0.46,  0.47,  0.46,  0.02],
       [ 0.46,  0.47,  0.46,  0.02,  0.85,  0.82],
       [ 0.46,  0.02,  0.85,  0.82,  0.78,  0.76]])

Here's how the 3D views output would look like -

In [69]: get_sliding_window(df, 3,return2D=0)
Out[69]: 
array([[[ 0.44,  0.41],
        [ 0.46,  0.47],
        [ 0.46,  0.02]],

       [[ 0.46,  0.47],
        [ 0.46,  0.02],
        [ 0.85,  0.82]],

       [[ 0.46,  0.02],
        [ 0.85,  0.82],
        [ 0.78,  0.76]]])

Let's time it for views 3D output for various window sizes -

In [331]: df = pd.DataFrame(np.random.rand(1000, 3).round(2))

In [332]: %timeit get_3d_shfted_array(df,2) # @Yakym Pirozhenko's soln
10000 loops, best of 3: 47.9 μs per loop

In [333]: %timeit get_sliding_window(df,2)
10000 loops, best of 3: 39.2 μs per loop

In [334]: %timeit get_3d_shfted_array(df,5) # @Yakym Pirozhenko's soln
10000 loops, best of 3: 89.9 μs per loop

In [335]: %timeit get_sliding_window(df,5)
10000 loops, best of 3: 39.4 μs per loop

In [336]: %timeit get_3d_shfted_array(df,15) # @Yakym Pirozhenko's soln
1000 loops, best of 3: 258 μs per loop

In [337]: %timeit get_sliding_window(df,15)
10000 loops, best of 3: 38.8 μs per loop

Let's verify that we are indeed getting views -

In [338]: np.may_share_memory(get_sliding_window(df,2), df.values)
Out[338]: True

The almost constant timings with get_sliding_window even across various window sizes suggest the huge benefit of getting the view instead of copying.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...