It is due to the s3 look up for the method, and then the necessary parsing of arguments in mean.default. (and also the other code in mean)
sum
and length
are both Primitive functions. so will be fast (but how are you handling NA values?)
t1 <- rnorm(10)
microbenchmark(
mean(t1),
sum(t1)/length(t1),
mean.default(t1),
.Internal(mean(t1)),
times = 10000)
Unit: nanoseconds
expr min lq median uq max neval
mean(t1) 10266 10951 11293 11635 1470714 10000
sum(t1)/length(t1) 684 1027 1369 1711 104367 10000
mean.default(t1) 2053 2396 2738 2739 1167195 10000
.Internal(mean(t1)) 342 343 685 685 86574 10000
The internal bit of mean
is faster even than sum
/length
.
See http://rwiki.sciviews.org/doku.php?id=packages:cran:data.table#method_dispatch_takes_time (mirror) for more details (and a data.table solution that avoids .Internal
).
Note that if we increase the length of the vector, then the primitive approach is fastest
t1 <- rnorm(1e7)
microbenchmark(
mean(t1),
sum(t1)/length(t1),
mean.default(t1),
.Internal(mean(t1)),
+ times = 100)
Unit: milliseconds
expr min lq median uq max neval
mean(t1) 25.79873 26.39242 26.56608 26.85523 33.36137 100
sum(t1)/length(t1) 15.02399 15.22948 15.31383 15.43239 19.20824 100
mean.default(t1) 25.69402 26.21466 26.44683 26.84257 33.62896 100
.Internal(mean(t1)) 25.70497 26.16247 26.39396 26.63982 35.21054 100
Now method dispatch is only a fraction of the overall "time" required.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…