You can use the TimeGrouper
function in a groupy/apply
. With a TimeGrouper
you don't need to create your period column. I know you're not trying to compute the mean but I will use it as an example:
>>> df.groupby(pd.TimeGrouper('5Min'))['val'].mean()
time
2014-04-03 16:00:00 14390.000000
2014-04-03 16:05:00 14394.333333
2014-04-03 16:10:00 14396.500000
Or an example with an explicit apply
:
>>> df.groupby(pd.TimeGrouper('5Min'))['val'].apply(lambda x: len(x) > 3)
time
2014-04-03 16:00:00 False
2014-04-03 16:05:00 False
2014-04-03 16:10:00 True
Doctstring for TimeGrouper
:
Docstring for resample:class TimeGrouper@21
TimeGrouper(self, freq = 'Min', closed = None, label = None,
how = 'mean', nperiods = None, axis = 0, fill_method = None,
limit = None, loffset = None, kind = None, convention = None, base = 0,
**kwargs)
Custom groupby class for time-interval grouping
Parameters
----------
freq : pandas date offset or offset alias for identifying bin edges
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
nperiods : optional, integer
convention : {'start', 'end', 'e', 's'}
If axis is PeriodIndex
Notes
-----
Use begin, end, nperiods to generate intervals that cannot be derived
directly from the associated object
Edit
I don't know of an elegant way to create the period column, but the following will work:
>>> new = df.groupby(pd.TimeGrouper('5Min'),as_index=False).apply(lambda x: x['val'])
>>> df['period'] = new.index.get_level_values(0)
>>> df
id val period
time
2014-04-03 16:01:53 23 14389 0
2014-04-03 16:01:54 28 14391 0
2014-04-03 16:05:55 24 14393 1
2014-04-03 16:06:25 23 14395 1
2014-04-03 16:07:01 23 14395 1
2014-04-03 16:10:09 23 14395 2
2014-04-03 16:10:23 26 14397 2
2014-04-03 16:10:57 26 14397 2
2014-04-03 16:11:10 26 14397 2
It works because the groupby here with as_index=False actually returns the period column you want as the part of the multiindex and I just grab that part of the multiindex and assign to a new column in the orginal dataframe. You could do anything in the apply, I just want the index:
>>> new
time
0 2014-04-03 16:01:53 14389
2014-04-03 16:01:54 14391
1 2014-04-03 16:05:55 14393
2014-04-03 16:06:25 14395
2014-04-03 16:07:01 14395
2 2014-04-03 16:10:09 14395
2014-04-03 16:10:23 14397
2014-04-03 16:10:57 14397
2014-04-03 16:11:10 14397
>>> new.index.get_level_values(0)
Int64Index([0, 0, 1, 1, 1, 2, 2, 2, 2], dtype='int64')