Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
167 views
in Technique[技术] by (71.8m points)

python - OpenCV remove background

I am trying to remove the background of some images, tweaking some values and using some methods like morphologyEx gives me an aceptable result but some holes still remaining, in this last case, the holes doesn't fill even iterating on every contour and drawing it with -1. I can see that threshold image is really good, making the whole shape with lines, but I don't know how to continue...

Update I've changed my code so I get better results but I'm still getting some holes... If I could fill theese holes, the script would be perfect.

def get_contrasted(image, type="dark", level=3):
    maxIntensity = 255.0 # depends on dtype of image data
    phi = 1
    theta = 1

    if type == "light":
        newImage0 = (maxIntensity/phi)*(image/(maxIntensity/theta))**0.5
        newImage0 = array(newImage0,dtype=uint8)
        return newImage0
    elif type == "dark":
        newImage1 = (maxIntensity/phi)*(image/(maxIntensity/theta))**level
        newImage1 = array(newImage1,dtype=uint8)

        return newImage1

def sharp(image, level=3):
    f = cv2.GaussianBlur(image, (level,level), level)
    f = cv2.addWeighted(image, 1.5, f, -0.5, 0)
    return f

original_image = imread('imagen.jpg')
# 1 Convert to gray & Normalize
gray_img = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
gray_img = sharp(get_contrasted(gray_img))
gray_img = normalize(gray_img, None, 0, 255, NORM_MINMAX, CV_8UC1)
imshow("Gray", gray_img)

# 2 Find Threshold
gray_blur = cv2.GaussianBlur(gray_img, (7, 7), 0)
adapt_thresh_im = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 1)
max_thresh, thresh_im = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
thresh = cv2.bitwise_or(adapt_thresh_im, thresh_im)

# 3 Dilate
gray = cv2.Canny(thresh, 88, 400, apertureSize=3)
gray = cv2.dilate(gray, None, iterations=8)
gray = cv2.erode(gray, None, iterations=8)
imshow("Trheshold", gray)

# 4 Flood
contours, _ = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour_info = []
for c in contours:
    contour_info.append((
        c,
        cv2.isContourConvex(c),
        cv2.contourArea(c),
    ))
contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
max_contour = contour_info[0]
holes = np.zeros(gray_img.shape, np.uint8)
drawContours(holes, max_contour, 0, 255, -1)
imshow("Holes", holes)

mask = cv2.GaussianBlur(holes, (15, 15), 0)
mask = np.dstack([mask] * 3)  # Create 3-channel alpha mask

mask = mask.astype('float32') / 255.0  # Use float matrices,
img = original_image.astype('float32') / 255.0  # for easy blending
masked = (mask * img) + ((1 - mask) * (0,0,1))  # Blend
masked = (masked * 255).astype('uint8')

imshow("Maked", masked)
waitKey()

0 Original

enter image description here

1 Threshold

enter image description here

2 Holes

enter image description here

3 Final Image

enter image description here

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

As I was tackling the same issue, and found a solution in Python (with opencv2), thought of just sharing this here as well. Hope it helps.

import numpy as np
import cv2

cv2.namedWindow('image', cv2.WINDOW_NORMAL)

#Load the Image
imgo = cv2.imread('koAl2.jpg')
height, width = imgo.shape[:2]

#Create a mask holder
mask = np.zeros(imgo.shape[:2],np.uint8)

#Grab Cut the object
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)

#Hard Coding the Rect The object must lie within this rect.
rect = (10,10,width-30,height-30)
cv2.grabCut(imgo,mask,rect,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
img1 = imgo*mask[:,:,np.newaxis]

#Get the background
background = imgo - img1

#Change all pixels in the background that are not black to white
background[np.where((background > [0,0,0]).all(axis = 2))] = [255,255,255]

#Add the background and the image
final = background + img1

#To be done - Smoothening the edges

cv2.imshow('image', final )

k = cv2.waitKey(0)

if k==27:
    cv2.destroyAllWindows()

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...