I am trying to remove the background of some images, tweaking some values and using some methods like morphologyEx
gives me an aceptable result but some holes still remaining, in this last case, the holes doesn't fill even iterating on every contour and drawing it with -1
. I can see that threshold image is really good, making the whole shape with lines, but I don't know how to continue...
Update
I've changed my code so I get better results but I'm still getting some holes... If I could fill theese holes, the script would be perfect.
def get_contrasted(image, type="dark", level=3):
maxIntensity = 255.0 # depends on dtype of image data
phi = 1
theta = 1
if type == "light":
newImage0 = (maxIntensity/phi)*(image/(maxIntensity/theta))**0.5
newImage0 = array(newImage0,dtype=uint8)
return newImage0
elif type == "dark":
newImage1 = (maxIntensity/phi)*(image/(maxIntensity/theta))**level
newImage1 = array(newImage1,dtype=uint8)
return newImage1
def sharp(image, level=3):
f = cv2.GaussianBlur(image, (level,level), level)
f = cv2.addWeighted(image, 1.5, f, -0.5, 0)
return f
original_image = imread('imagen.jpg')
# 1 Convert to gray & Normalize
gray_img = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
gray_img = sharp(get_contrasted(gray_img))
gray_img = normalize(gray_img, None, 0, 255, NORM_MINMAX, CV_8UC1)
imshow("Gray", gray_img)
# 2 Find Threshold
gray_blur = cv2.GaussianBlur(gray_img, (7, 7), 0)
adapt_thresh_im = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 1)
max_thresh, thresh_im = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
thresh = cv2.bitwise_or(adapt_thresh_im, thresh_im)
# 3 Dilate
gray = cv2.Canny(thresh, 88, 400, apertureSize=3)
gray = cv2.dilate(gray, None, iterations=8)
gray = cv2.erode(gray, None, iterations=8)
imshow("Trheshold", gray)
# 4 Flood
contours, _ = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour_info = []
for c in contours:
contour_info.append((
c,
cv2.isContourConvex(c),
cv2.contourArea(c),
))
contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
max_contour = contour_info[0]
holes = np.zeros(gray_img.shape, np.uint8)
drawContours(holes, max_contour, 0, 255, -1)
imshow("Holes", holes)
mask = cv2.GaussianBlur(holes, (15, 15), 0)
mask = np.dstack([mask] * 3) # Create 3-channel alpha mask
mask = mask.astype('float32') / 255.0 # Use float matrices,
img = original_image.astype('float32') / 255.0 # for easy blending
masked = (mask * img) + ((1 - mask) * (0,0,1)) # Blend
masked = (masked * 255).astype('uint8')
imshow("Maked", masked)
waitKey()
0 Original
1 Threshold
2 Holes
3 Final Image
See Question&Answers more detail:
os