Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
162 views
in Technique[技术] by (71.8m points)

python - "Parallel" pipeline to get best model using gridsearch

In sklearn, a serial pipeline can be defined to get the best combination of hyperparameters for all consecutive parts of the pipeline. A serial pipeline can be implemented as follows:

from sklearn.svm import SVC
from sklearn import decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

digits = datasets.load_digits()
X_train = digits.data
y_train = digits.target

#Use Principal Component Analysis to reduce dimensionality
# and improve generalization
pca = decomposition.PCA()
# Use a linear SVC
svm = SVC()
# Combine PCA and SVC to a pipeline
pipe = Pipeline(steps=[('pca', pca), ('svm', svm)])
# Check the training time for the SVC
n_components = [20, 40, 64]
params_grid = {
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca__n_components': n_components,
}

But what if I want to try different algorithms for each step of the pipeline? How can I e.g. gridsearch over

Principal Component Analysis OR Singular Value Decomposition AND Support Vector machines OR Random Forest

This would require some kind of 2nd level or "meta-gridsearch", since the type of model would be one of the hyperparameters. Is that possible in sklearn?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Pipeline supports None in its steps(list of estimators) by which certain part of the pipeline can be toggled off.

You can pass None parameter to the named_steps of the pipeline to not use that estimator by setting that in params passed to GridSearchCV.

Lets assume you want to use PCA and TruncatedSVD.

pca = decomposition.PCA()
svd = decomposition.TruncatedSVD()
svm = SVC()
n_components = [20, 40, 64]

Add svd in pipeline

pipe = Pipeline(steps=[('pca', pca), ('svd', svd), ('svm', svm)])

# Change params_grid -> Instead of dict, make it a list of dict**
# In the first element, pass `svd = None`, and in second `pca = None`
params_grid = [{
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca__n_components': n_components,
'svd':[None]
},
{
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca':[None],
'svd__n_components': n_components,
'svd__algorithm':['randomized']
}]

and now just pass the pipeline object to gridsearchCV

grd = GridSearchCV(pipe, param_grid = params_grid)

Calling grd.fit() will search the parameters over both the elements of the params_grid list, using all values from one at a time.

Simplification if parameters have same name

If both estimators in your "OR" have same name of parameters as in this case, where PCA and TruncatedSVD has n_components (or you just want to search over this parameter, this can be simplified as:

#Here I have changed the name to `preprocessor`
pipe = Pipeline(steps=[('preprocessor', pca), ('svm', svm)])

#Now assign both estimators to `preprocessor` as below:
params_grid = {
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'preprocessor':[pca, svd],
'preprocessor__n_components': n_components,
}

Generalization of this scheme

We can make a function which can automatically populate our param_grid to be supplied to the GridSearchCV using appropriate values:-

def make_param_grids(steps, param_grids):

    final_params=[]

    # Itertools.product will do a permutation such that 
    # (pca OR svd) AND (svm OR rf) will become ->
    # (pca, svm) , (pca, rf) , (svd, svm) , (svd, rf)
    for estimator_names in itertools.product(*steps.values()):
        current_grid = {}

        # Step_name and estimator_name should correspond
        # i.e preprocessor must be from pca and select.
        for step_name, estimator_name in zip(steps.keys(), estimator_names):
            for param, value in param_grids.get(estimator_name).iteritems():
                if param == 'object':
                    # Set actual estimator in pipeline
                    current_grid[step_name]=[value]
                else:
                    # Set parameters corresponding to above estimator
                    current_grid[step_name+'__'+param]=value
        #Append this dictionary to final params            
        final_params.append(current_grid)

return final_params

And use this function on any number of transformers and estimators

# add all the estimators you want to "OR" in single key
# use OR between `pca` and `select`, 
# use OR between `svm` and `rf`
# different keys will be evaluated as serial estimator in pipeline
pipeline_steps = {'preprocessor':['pca', 'select'],
                  'classifier':['svm', 'rf']}

# fill parameters to be searched in this dict
all_param_grids = {'svm':{'object':SVC(), 
                          'C':[0.1,0.2]
                         }, 

                   'rf':{'object':RandomForestClassifier(),
                         'n_estimators':[10,20]
                        },

                   'pca':{'object':PCA(),
                          'n_components':[10,20]
                         },

                   'select':{'object':SelectKBest(),
                             'k':[5,10]
                            }
                  }  


# Call the method on the above declared variables
param_grids_list = make_param_grids(pipeline_steps, all_param_grids)

Now initialize a pipeline object with names as used in above pipeline_steps

# The PCA() and SVC() used here are just to initialize the pipeline,
# actual estimators will be used from our `param_grids_list`
pipe = Pipeline(steps=[('preprocessor',PCA()), ('classifier', SVC())])  

Now, finally set out gridSearchCV object and fit data

grd = GridSearchCV(pipe, param_grid = param_grids_list)
grd.fit(X, y)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...