Pipeline supports None
in its steps
(list of estimators) by which certain part of the pipeline can be toggled off.
You can pass None
parameter to the named_steps
of the pipeline to not use that estimator by setting that in params passed to GridSearchCV.
Lets assume you want to use PCA
and TruncatedSVD
.
pca = decomposition.PCA()
svd = decomposition.TruncatedSVD()
svm = SVC()
n_components = [20, 40, 64]
Add svd
in pipeline
pipe = Pipeline(steps=[('pca', pca), ('svd', svd), ('svm', svm)])
# Change params_grid -> Instead of dict, make it a list of dict**
# In the first element, pass `svd = None`, and in second `pca = None`
params_grid = [{
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca__n_components': n_components,
'svd':[None]
},
{
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca':[None],
'svd__n_components': n_components,
'svd__algorithm':['randomized']
}]
and now just pass the pipeline object to gridsearchCV
grd = GridSearchCV(pipe, param_grid = params_grid)
Calling grd.fit()
will search the parameters over both the elements of the params_grid
list, using all values from one at a time.
Simplification if parameters have same name
If both estimators in your "OR" have same name of parameters as in this case, where PCA
and TruncatedSVD
has n_components
(or you just want to search over this parameter, this can be simplified as:
#Here I have changed the name to `preprocessor`
pipe = Pipeline(steps=[('preprocessor', pca), ('svm', svm)])
#Now assign both estimators to `preprocessor` as below:
params_grid = {
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'preprocessor':[pca, svd],
'preprocessor__n_components': n_components,
}
Generalization of this scheme
We can make a function which can automatically populate our param_grid
to be supplied to the GridSearchCV
using appropriate values:-
def make_param_grids(steps, param_grids):
final_params=[]
# Itertools.product will do a permutation such that
# (pca OR svd) AND (svm OR rf) will become ->
# (pca, svm) , (pca, rf) , (svd, svm) , (svd, rf)
for estimator_names in itertools.product(*steps.values()):
current_grid = {}
# Step_name and estimator_name should correspond
# i.e preprocessor must be from pca and select.
for step_name, estimator_name in zip(steps.keys(), estimator_names):
for param, value in param_grids.get(estimator_name).iteritems():
if param == 'object':
# Set actual estimator in pipeline
current_grid[step_name]=[value]
else:
# Set parameters corresponding to above estimator
current_grid[step_name+'__'+param]=value
#Append this dictionary to final params
final_params.append(current_grid)
return final_params
And use this function on any number of transformers and estimators
# add all the estimators you want to "OR" in single key
# use OR between `pca` and `select`,
# use OR between `svm` and `rf`
# different keys will be evaluated as serial estimator in pipeline
pipeline_steps = {'preprocessor':['pca', 'select'],
'classifier':['svm', 'rf']}
# fill parameters to be searched in this dict
all_param_grids = {'svm':{'object':SVC(),
'C':[0.1,0.2]
},
'rf':{'object':RandomForestClassifier(),
'n_estimators':[10,20]
},
'pca':{'object':PCA(),
'n_components':[10,20]
},
'select':{'object':SelectKBest(),
'k':[5,10]
}
}
# Call the method on the above declared variables
param_grids_list = make_param_grids(pipeline_steps, all_param_grids)
Now initialize a pipeline object with names as used in above pipeline_steps
# The PCA() and SVC() used here are just to initialize the pipeline,
# actual estimators will be used from our `param_grids_list`
pipe = Pipeline(steps=[('preprocessor',PCA()), ('classifier', SVC())])
Now, finally set out gridSearchCV object and fit data
grd = GridSearchCV(pipe, param_grid = param_grids_list)
grd.fit(X, y)