Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
330 views
in Technique[技术] by (71.8m points)

c - Best machine-optimized polynomial minimax approximation to arctangent on [-1,1]?

For the simple and efficient implementation of fast math functions with reasonable accuracy, polynomial minimax approximations are often the method of choice. Minimax approximations are typically generated with a variant of the Remez algorithm. Various widely available tools such as Maple and Mathematica have built-in functionality for this. The generated coefficients are typically computed using high-precision arithmetic. It is well-known that simply rounding those coefficients to machine precision leads to suboptimal accuracy in the resulting implementation.

Instead, one searches for closely related sets of coefficients that are exactly representable as machine numbers to generate a machine-optimized approximation. Two relevant papers are:

Nicolas Brisebarre, Jean-Michel Muller, and Arnaud Tisserand, "Computing Machine-Efficient Polynomial Approximations", ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006, pp. 236–256.

Nicolas Brisebarre and Sylvain Chevillard, "Efficient polynomial L∞-approximations", 18th IEEE Symposium on Computer Arithmetic (ARITH-18), Montpellier (France), June 2007, pp. 169-176.

An implementation of the LLL-algorithm from the latter paper is available as the fpminimax() command of the Sollya tool. It is my understanding that all algorithms proposed for the generation of machine-optimized approximations are based on heuristics, and that it is therefore generally unknown what accuracy can be achieved by an optimal approximation. It is not clear to me whether the availability of FMA (fused multiply-add) for the evaluation of the approximation has an influence on the answer to that question. It seems to me naively that it should.

I am currently looking at a simple polynomial approximation for arctangent on [-1,1] that is evaluated in IEEE-754 single-precision arithmetic, using the Horner scheme and FMA. See function atan_poly() in the C99 code below. For lack of access to a Linux machine at the moment, I did not use Sollya to generate these coefficients, but used my own heuristic that could be loosely described as a mixture of steepest decent and simulated annealing (to avoid getting stuck on local minima). The maximum error of my machine-optimized polynomial is very close to 1 ulp, but ideally I would like the maximum ulp error to be below 1 ulp.

I am aware that I could change my computation to increase the accuracy, for example by using a leading coefficient represented to more than single-precision precision, but I would like to keep the code exactly as is (that is, as simple as possible) adjusting only the coefficients to deliver the most accurate result possible.

A "proven" optimal set of coefficients would be ideal, pointers to relevant literature are welcome. I did a literature search but could not find any paper that advances the state of the art meaningfully beyond Sollya's fpminimax(), and none that examine the role of FMA (if any) in this issue.

// max ulp err = 1.03143
float atan_poly (float a)
{
    float r, s;
    s = a * a;
    r =              0x1.7ed1ccp-9f;
    r = fmaf (r, s, -0x1.0c2c08p-6f);
    r = fmaf (r, s,  0x1.61fdd0p-5f);
    r = fmaf (r, s, -0x1.3556b2p-4f);
    r = fmaf (r, s,  0x1.b4e128p-4f);
    r = fmaf (r, s, -0x1.230ad2p-3f);
    r = fmaf (r, s,  0x1.9978ecp-3f);
    r = fmaf (r, s, -0x1.5554dcp-2f);
    r = r * s;
    r = fmaf (r, a, a);
    return r;
}

// max ulp err = 1.52637
float my_atanf (float a)
{
    float r, t;
    t = fabsf (a);
    r = t;
    if (t > 1.0f) {
        r = 1.0f / r;
    }
    r = atan_poly (r);
    if (t > 1.0f) {
        r = fmaf (0x1.ddcb02p-1f, 0x1.aee9d6p+0f, -r); // pi/2 - r
    }
    r = copysignf (r, a);
    return r;
}
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The following function is a faithfully-rounded implementation of arctan on [0, 1]:

float atan_poly (float a) {
  float s = a * a, u = fmaf(a, -a, 0x1.fde90cp-1f);
  float r1 =               0x1.74dfb6p-9f;
  float r2 = fmaf (r1, u,  0x1.3a1c7cp-8f);
  float r3 = fmaf (r2, s, -0x1.7f24b6p-7f);
  float r4 = fmaf (r3, u, -0x1.eb3900p-7f);
  float r5 = fmaf (r4, s,  0x1.1ab95ap-5f);
  float r6 = fmaf (r5, u,  0x1.80e87cp-5f);
  float r7 = fmaf (r6, s, -0x1.e71aa4p-4f);
  float r8 = fmaf (r7, u, -0x1.b81b44p-3f);
  float r9 = r8 * s;
  float r10 = fmaf (r9, a, a);
  return r10;
}

The following test harness will abort if the function atan_poly fails to be faithfully-rounded on [1e-16, 1] and print "success" otherwise:

int checkit(float f) {
  double d = atan(f);
  float d1 = d, d2 = d;
  if (d1 < d) d2 = nextafterf(d1, 1.0/0.0);
  else d1 = nextafterf(d1, -1.0/0.0);
  float p = atan_poly(f);
  if (p != d1 && p != d2) return 0;
  return 1;
}

int main() {
  for (float f = 1; f > 1e-16; f = nextafterf(f, -1.0/0.0)) {
    if (!checkit(f)) abort();
  }
  printf("success
");
  exit(0);
}

The problem with using s in every multiplication is that the polynomial's coefficients do not decay rapidly. Inputs close to 1 result in lots and lots of cancellation of nearly equal numbers, meaning you're trying to find a set of coefficients so that the accumulated roundoff at the end of the computation closely approximates the residual of arctan.

The constant 0x1.fde90cp-1f is a number close to 1 for which (arctan(sqrt(x)) - x) / x^3 is very close to the nearest float. That is, it's a constant that goes into the computation of u so that the cubic coefficient is almost completely determined. (For this program, the cubic coefficient must be either -0x1.b81b44p-3f or -0x1.b81b42p-3f.)

Alternating multiplications by s and u has the effect of reducing the effect of roundoff error in ri upon r{i+2} by a factor of at most 1/4, since s*u < 1/4 whatever a is. This gives considerable leeway in choosing the coefficients of fifth order and beyond.


I found the coefficients with the aid of two programs:

  • One program plugs in a bunch of test points, writes down a system of linear inequalities, and computes bounds on the coefficients from that system of inequalities. Notice that, given a, one can compute the range of r8 that lead to a faithfully-rounded result. To get linear inequalities, I pretended r8 would be computed as a polynomial in the floats s and u in real-number arithmetic; the linear inequalities constrained this real-number r8 to lie in some interval. I used the Parma Polyhedra Library to handle these constraint systems.
  • Another program randomly tested sets of coefficients in certain ranges, plugging in first a set of test points and then all floats from 1 to 1e-8 in descending order and checking that atan_poly produces a faithful rounding of atan((double)x). If some x failed, it printed out that x and why it failed.

To get coefficients, I hacked this first program to fix c3, work out bounds on r7 for each test point, then get bounds on the higher-order coefficients. Then I hacked it to fix c3 and c5 and get bounds on the higher-order coefficients. I did this until I had all but the three highest-order coefficients, c13, c15, and c17.

I grew the set of test points in the second program until it either stopped printing anything out or printed out "success". I needed surprisingly few test points to reject almost all wrong polynomials---I count 85 test points in the program.


Here I show some of my work selecting the coefficients. In order to get a faithfully-rounded arctan for my initial set of test points assuming r1 through r8 are evaluated in real arithmetic (and rounded somehow unpleasantly but in a way I can't remember) but r9 and r10 are evaluated in float arithmetic, I need:

-0x1.b81b456625f15p-3 <= c3 <= -0x1.b81b416e22329p-3
-0x1.e71d48d9c2ca4p-4 <= c5 <= -0x1.e71783472f5d1p-4
0x1.80e063cb210f9p-5 <= c7 <= 0x1.80ed6efa0a369p-5
0x1.1a3925ea0c5a9p-5 <= c9 <= 0x1.1b3783f148ed8p-5
-0x1.ec6032f293143p-7 <= c11 <= -0x1.e928025d508p-7
-0x1.8c06e851e2255p-7 <= c13 <= -0x1.732b2d4677028p-7
0x1.2aff33d629371p-8 <= c15 <= 0x1.41e9bc01ae472p-8
0x1.1e22f3192fd1dp-9 <= c17 <= 0x1.d851520a087c2p-9

Taking c3 = -0x1.b81b44p-3, assuming r8 is also evaluated in float arithmetic:

-0x1.e71df05b5ad56p-4 <= c5 <= -0x1.e7175823ce2a4p-4
0x1.80df529dd8b18p-5 <= c7 <= 0x1.80f00e8da7f58p-5
0x1.1a283503e1a97p-5 <= c9 <= 0x1.1b5ca5beeeefep-5
-0x1.ed2c7cd87f889p-7 <= c11 <= -0x1.e8c17789776cdp-7
-0x1.90759e6defc62p-7 <= c13 <= -0x1.7045e66924732p-7
0x1.27eb51edf324p-8 <= c15 <= 0x1.47cda0bb1f365p-8
0x1.f6c6b51c50b54p-10 <= c17 <= 0x1.003a00ace9a79p-8

Taking c5 = -0x1.e71aa4p-4, assuming r7 is done in float arithmetic:

0x1.80e3dcc972cb3p-5 <= c7 <= 0x1.80ed1cf56977fp-5
0x1.1aa005ff6a6f4p-5 <= c9 <= 0x1.1afce9904742p-5
-0x1.ec7cf2464a893p-7 <= c11 <= -0x1.e9d6f7039db61p-7
-0x1.8a2304daefa26p-7 <= c13 <= -0x1.7a2456ddec8b2p-7
0x1.2e7b48f595544p-8 <= c15 <= 0x1.44437896b7049p-8
0x1.396f76c06de2ep-9 <= c17 <= 0x1.e3bedf4ed606dp-9

Taking c7 = 0x1.80e87cp-5, assuming r6 is done in float arithmetic:

0x1.1aa86d25bb64fp-5 <= c9 <= 0x1.1aca48cd5caabp-5
-0x1.eb6311f6c29dcp-7 <= c11 <= -0x1.eaedb032dfc0cp-7
-0x1.81438f115cbbp-7 <= c13 <= -0x1.7c9a106629f06p-7
0x1.36d433f81a012p-8 <= c15 <= 0x1.3babb57bb55bap-8
0x1.5cb14e1d4247dp-9 <= c17 <= 0x1.84f1151303aedp-9

Taking c9 = 0x1.1ab95ap-5, assuming r5 is done in float arithmetic:

-0x1.eb51a3b03781dp-7 <= c11 <= -0x1.eb21431536e0dp-7
-0x1.7fcd84700f7cfp-7 <= c13 <= -0x1.7ee38ee4beb65p-7
0x1.390fa00abaaabp-8 <= c15 <= 0x1.3b100a7f5d3cep-8
0x1.6ff147e1fdeb4p-9 <= c17 <= 0x1.7ebfed3ab5f9bp-9

I picked a point close to the middle of the range for c11 and randomly chose c13, c15, and c17.


EDIT: I've now automated this procedure. The following function is also a faithfully-rounded implementation of arctan on [0, 1]:

float c5 = 0x1.997a72p-3;
float c7 = -0x1.23176cp-3;
float c9 = 0x1.b523c8p-4;
float c11 = -0x1.358ff8p-4;
float c13 = 0x1.61c5c2p-5;
float c15 = -0x1.0b16e2p-6;
float c17 = 0x1.7b422p-9;

float juffa_poly (float a) {
  float s = a * a;
  float r1 =              c17;
  float r2 = fmaf (r1, s, c15);
  float r3 = fmaf (r2, s, c13);
  float r4 = fmaf (r3, s, c11);
  float r5 = fmaf (r4, s, c9);
  float r6 = fmaf (r5, s, c7);
  float r7 = fmaf (r6, s, c5);
  float r8 = fmaf (r7, s, -0x1.5554dap-2f);
  float r9 = r8 * s;
  float r10 = fmaf (r9, a, a);
  return r10;
}

I find it surprising that this code even exists. For coefficients near these, you can get a bound on the distance between r10 and the value of the polynomial evaluated in real arithmetic on the order of a few ulps thanks to the slow convergence of this polynomial when s is near 1. I had expected roundoff error to behave in a way that was fundamentally "untamable" simply by means of tweaking coefficients.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...