Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
317 views
in Technique[技术] by (71.8m points)

python - conda fails to create environment from yml

I’m trying to run the code below to create a virtual Python environment from a YAML file. I’m running the code in the command line on Ubuntu server. The virtual environment is named py36. When I run the code below, I get the message below. The environment also doesn’t get created. Is this problem caused because I have several packages that I had to install using pip instead of Anaconda? Does anyone know how to solve this issue?

I created the YAML file following the example from:

https://datascience.stackexchange.com/questions/24093/how-to-clone-python-working-environment-on-another-machine

Code:

conda env create -f py36.yml

py36.yml

name: py36
channels:
  - anaconda
  - cvxgrp
  - conda-forge
  - defaults
dependencies:
  - beautifulsoup4=4.6.3=py36_0
  - patsy=0.5.1=py36_0
  - sqlite=3.25.3=ha441bb4_0
  - tk=8.6.8=ha441bb4_0
  - asn1crypto=0.24.0=py36_1003
  - ca-certificates=2018.11.29=ha4d7672_0
  - certifi=2018.11.29=py36_1000
  - cffi=1.11.5=py36h5e8e0c9_1
  - clangdev=4.0.0=default_0
  - cryptography=2.3.1=py36hdbc3d79_1000
  - cryptography-vectors=2.3.1=py36_1000
  - cycler=0.10.0=py_1
  - fftw=3.3.8=h470a237_0
  - freetype=2.9.1=h6debe1e_4
  - glpk=4.65=h16a7912_1
  - gmp=6.1.2=hfc679d8_0
  - icu=58.2=h0a44026_1000
  - idna=2.8=py36_1000
  - kiwisolver=1.0.1=py36h2d50403_2
  - lapack=3.6.1=1
  - libiconv=1.15=h1de35cc_1004
  - libpng=1.6.35=ha92aebf_2
  - libxml2=2.9.8=hf14e9c8_1005
  - lightgbm=2.2.1=py36hfc679d8_0
  - llvmdev=4.0.0=default_0
  - matplotlib=2.2.3=py36h0e0179f_0
  - metis=5.1.0=3
  - mkl_fft=1.0.6=py36_0
  - mkl_random=1.0.1=py36_0
  - mlxtend=0.13.0=py_1
  - openblas=0.2.20=8
  - openmp=4.0.0=1
  - openssl=1.0.2p=h1de35cc_1002
  - pandas=0.23.4=py36hf8a1672_0
  - pycparser=2.19=py_0
  - pyopenssl=18.0.0=py36_1000
  - pyparsing=2.2.0=py_1
  - pysocks=1.6.8=py36_1002
  - python=3.6.6=h4a56312_1003
  - pytz=2018.5=py_0
  - selenium=3.141.0=py36h470a237_0
  - tbb=2018_20171205=0
  - urllib3=1.24.1=py36_1000
  - cvxcanon=0.1.1=py36_0
  - cvxpy=1.0.6=py36_0
  - ecos=2.0.5=py36hf9b3073_0
  - multiprocess=0.70.4=py36_0
  - scs=1.2.6=py36_0
  - appnope=0.1.0=py36hf537a9a_0
  - backcall=0.1.0=py36_0
  - blas=1.0=mkl
  - cvxopt=1.2.0=py36hb579ef3_0
  - decorator=4.3.0=py36_0
  - dill=0.2.8.2=py36_0
  - dsdp=5.8=hb579ef3_0
  - fastcache=1.0.2=py36h1de35cc_2
  - gsl=2.4=h1de35cc_4
  - intel-openmp=2019.0=117
  - ipykernel=4.8.2=py36_0
  - ipython=6.4.0=py36_0
  - ipython_genutils=0.2.0=py36h241746c_0
  - jedi=0.12.0=py36_1
  - jupyter_client=5.2.3=py36_0
  - jupyter_core=4.4.0=py36h79cf704_0
  - libcxx=4.0.1=h579ed51_0
  - libcxxabi=4.0.1=hebd6815_0
  - libedit=3.1.20170329=hb402a30_2
  - libffi=3.2.1=h475c297_4
  - libgcc=4.8.5=hdbeacc1_10
  - libgfortran=3.0.1=h93005f0_2
  - libopenblas=0.3.3=hdc02c5d_2
  - libsodium=1.0.16=h3efe00b_0
  - mkl=2018.0.3=1
  - ncurses=6.1=h0a44026_0
  - numpy=1.15.4=py36h6a91979_0
  - numpy-base=1.15.4=py36h8a80b8c_0
  - parso=0.2.1=py36_0
  - pexpect=4.6.0=py36_0
  - pickleshare=0.7.4=py36hf512f8e_0
  - pip=10.0.1=py36_0
  - prompt_toolkit=1.0.15=py36haeda067_0
  - ptyprocess=0.5.2=py36he6521c3_0
  - pygments=2.2.0=py36h240cd3f_0
  - python-dateutil=2.7.3=py36_0
  - pyzmq=17.0.0=py36h1de35cc_1
  - readline=7.0=hc1231fa_4
  - scikit-learn=0.20.1=py36h4f467ca_0
  - scipy=1.1.0=py36h28f7352_1
  - setuptools=39.2.0=py36_0
  - simplegeneric=0.8.1=py36_2
  - six=1.11.0=py36h0e22d5e_1
  - suitesparse=5.2.0=he235d88_0
  - toolz=0.9.0=py36_0
  - tornado=5.0.2=py36_0
  - traitlets=4.3.2=py36h65bd3ce_0
  - wcwidth=0.1.7=py36h8c6ec74_0
  - wheel=0.31.1=py36_0
  - xz=5.2.4=h1de35cc_4
  - zeromq=4.2.5=h378b8a2_0
  - zlib=1.2.11=hf3cbc9b_2
  - pip:
    - absl-py==0.2.2
    - astor==0.6.2
    - bleach==1.5.0
    - cython==0.28.3
    - gast==0.2.0
    - grpcio==1.12.1
    - h5py==2.8.0
    - html5lib==0.9999999
    - keras==2.2.0
    - keras-applications==1.0.2
    - keras-preprocessing==1.0.1
    - markdown==2.6.11
    - pillow==5.1.0
    - protobuf==3.5.2.post1
    - pyramid-arima==0.6.5
    - pyyaml==3.12
    - sklearn==0.0
    - statsmodels==0.9.0
    - tensorboard==1.8.0
    - tensorflow==1.8.0
    - termcolor==1.1.0
    - tqdm==4.23.4
    - werkzeug==0.14.1
    - xlrd==1.1.0
prefix: /Users/username/anaconda2/envs/py36

Command line

conda env create -f py36.yml
Collecting package metadata: done
Solving environment: failed

ResolvePackageNotFound: 
  - libgfortran==3.0.1=h93005f0_2
  - pyzmq==17.0.0=py36h1de35cc_1
  - python==3.6.6=h4a56312_1003
  - prompt_toolkit==1.0.15=py36haeda067_0
  - libiconv==1.15=h1de35cc_1004
  - sqlite==3.25.3=ha441bb4_0
  - six==1.11.0=py36h0e22d5e_1
  - cryptography==2.3.1=py36hdbc3d79_1000
  - openssl==1.0.2p=h1de35cc_1002
  - libxml2==2.9.8=hf14e9c8_1005
  - libcxxabi==4.0.1=hebd6815_0
  - matplotlib==2.2.3=py36h0e0179f_0
  - ptyprocess==0.5.2=py36he6521c3_0
  - readline==7.0=hc1231fa_4
  - libedit==3.1.20170329=hb402a30_2
  - libgcc==4.8.5=hdbeacc1_10
  - xz==5.2.4=h1de35cc_4
  - pickleshare==0.7.4=py36hf512f8e_0
  - appnope==0.1.0=py36hf537a9a_0
  - scipy==1.1.0=py36h28f7352_1
  - cvxopt==1.2.0=py36hb579ef3_0
  - jupyter_core==4.4.0=py36h79cf704_0
  - dsdp==5.8=hb579ef3_0
  - ncurses==6.1=h0a44026_0
  - tk==8.6.8=ha441bb4_0
  - ecos==2.0.5=py36hf9b3073_0
  - wcwidth==0.1.7=py36h8c6ec74_0
  - scikit-learn==0.20.1=py36h4f467ca_0
  - libopenblas==0.3.3=hdc02c5d_2
  - traitlets==4.3.2=py36h65bd3ce_0
  - libsodium==1.0.16=h3efe00b_0
  - ipython_genutils==0.2.0=py36h241746c_0
  - fastcache==1.0.2=py36h1de35cc_2
  - numpy==1.15.4=py36h6a91979_0
  - numpy-base==1.15.4=py36h8a80b8c_0
  - zlib==1.2.11=hf3cbc9b_2
  - libffi==3.2.1=h475c297_4
  - pygments==2.2.0=py36h240cd3f_0
  - icu==58.2=h0a44026_1000
  - gsl==2.4=h1de35cc_4
  - libcxx==4.0.1=h579ed51_0
  - suitesparse==5.2.0=he235d88_0
  - zeromq==4.2.5=h378b8a2_0
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

No, PyPI is not the issue. Instead, it fails because the YAML includes platform-specific build constraints, but you are transferring across platforms. Specifically, examining the build numbers on the failed packages (e.g., six=py36h0e22d5e_1), I can see that they correspond to packages from the osx-64 platform, but you are trying to install on a linux-64 platform, hence the build constraints are unresolvable.

Omit Build Info

The simplest solution to this is to omit the build info from the environment definition export.

conda env export -n py36 -f py36.yml --no-builds

There can still be issues if some of the packages are not available on linux-64 through Conda. If this is the case, you may need to find other channels (or check PyPI), switch versions, or remove the dependency altogether. Most of the packages look standard though.

Not so important, but you can safely remove cvxgrp from your channels. That channel only serves an outdated version of cvxopt and only for osx-64.

Explicit Specifications Only

Another, even more loosely defined option, is to output only what Conda refers to as explicit specifications. These indicate only those requirements that have been explicitly requested by the user. This includes packages, but also captures any version constraints, etc., that were provided by the user at some point.

conda env export -n py36 -f py36.yml --from-history

The advantage here is that any platform-specific dependencies will be ignored.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...