One of the main features of pandas
is being NaN
friendly. To calculate correlation matrix, simply call df_counties.corr()
. Below is an example to demonstrate df.corr()
is NaN
tolerant whereas np.corrcoef
is not.
import pandas as pd
import numpy as np
# data
# ==============================
np.random.seed(0)
df = pd.DataFrame(np.random.randn(100,5), columns=list('ABCDE'))
df[df < 0] = np.nan
df
A B C D E
0 1.7641 0.4002 0.9787 2.2409 1.8676
1 NaN 0.9501 NaN NaN 0.4106
2 0.1440 1.4543 0.7610 0.1217 0.4439
3 0.3337 1.4941 NaN 0.3131 NaN
4 NaN 0.6536 0.8644 NaN 2.2698
5 NaN 0.0458 NaN 1.5328 1.4694
6 0.1549 0.3782 NaN NaN NaN
7 0.1563 1.2303 1.2024 NaN NaN
8 NaN NaN NaN 1.9508 NaN
9 NaN NaN 0.7775 NaN NaN
.. ... ... ... ... ...
90 NaN 0.8202 0.4631 0.2791 0.3389
91 2.0210 NaN NaN 0.1993 NaN
92 NaN NaN NaN 0.1813 NaN
93 2.4125 NaN NaN NaN 0.2515
94 NaN NaN NaN NaN 1.7389
95 0.9944 1.3191 NaN 1.1286 0.4960
96 0.7714 1.0294 NaN NaN 0.8626
97 NaN 1.5133 0.5531 NaN 0.2205
98 NaN NaN 1.1003 1.2980 2.6962
99 NaN NaN NaN NaN NaN
[100 rows x 5 columns]
# calculations
# ================================
df.corr()
A B C D E
A 1.0000 0.2718 0.2678 0.2822 0.1016
B 0.2718 1.0000 -0.0692 0.1736 -0.1432
C 0.2678 -0.0692 1.0000 -0.3392 0.0012
D 0.2822 0.1736 -0.3392 1.0000 0.1562
E 0.1016 -0.1432 0.0012 0.1562 1.0000
np.corrcoef(df, rowvar=False)
array([[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan]])
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…