I'd like to drop all values from a table if the rows = nan or 0.
nan
0
I know there's a way to do this using pandas i.e pandas.dropna(how = 'all') but I'd like a numpy method to remove rows with all nan or 0.
pandas.dropna(how = 'all')
Is there an efficient implementation of this?
import numpy as np a = np.array([ [1, 0, 0], [0, np.nan, 0], [0, 0, 0], [np.nan, np.nan, np.nan], [2, 3, 4] ]) mask = np.all(np.isnan(a) | np.equal(a, 0), axis=1) a[~mask]
1.4m articles
1.4m replys
5 comments
57.0k users