Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
628 views
in Technique[技术] by (71.8m points)

python - Remove noisy lines from an image

I have images that are noised with some random lines like the following one:
enter image description here
I want to apply on them some preprocessing in order to remove the unwanted noise ( the lines that distort the writing) so that I can use them with OCR (Tesseract).
The idea that came to my mind is to use dilation to remove the noise then use erosion to fix the missing parts of the writing in a second step.
For that, I used this code:

import cv2
import numpy as np

img = cv2.imread('linee.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((5, 5), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
cv2.imwrite('delatedtest.png', img)

Unfortunately, the dilation didn't work well, The noise lines are still existing.

enter image description here
I tried changing the kernel shape, but it got worse: the writing were partially or completely deleted.
I also found an answer saying that it is possible to remove the lines by

turning all black pixels with two or less adjacent black pixels to white.

That seems a bit complicated for me since I am beginner to computer vision and opencv.
Any help would be appreciated, thank you.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Detecting lines like these is what the path opening was invented for. DIPlib has an implementation (disclosure: I implemented it there). As an alternative, you can try using the implementation by the authors of the paper that I linked above. That implementation does not have the "constrained" mode that I use below.

Here is a quick demo for how you can use it:

import diplib as dip
import matplotlib.pyplot as pp

img = 1 - pp.imread('/home/cris/tmp/DWRTF.png')
lines = dip.PathOpening(img, length=300, mode={'constrained'})

Here we first inverted the image because that makes other things later easier. If not inverting, use a path closing instead. The lines image:

lines

Next we subtract the lines. A small area opening removes the few isolated pixels of the line that were filtered out by the path opening:

text = img - lines
text = dip.AreaOpening(text, filterSize=5)

text

However, we've now made gaps in the text. Filling these up is not trivial. Here is a quick-and-dirty attempt, which you can use as a starting point:

lines = lines > 0.5
text = text > 0.5
lines -= dip.BinaryPropagation(text, lines, connectivity=-1, iterations=3)
img[lines] = 0

final result


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...