When I want to use tf.train.string_input_producer
to load data for 2 epochs, I used
filename_queue = tf.train.string_input_producer(filenames=['data.csv'], num_epochs=2, shuffle=True)
col1_batch, col2_batch, col3_batch = tf.train.shuffle_batch([col1, col2, col3], batch_size=batch_size, capacity=capacity,min_after_dequeue=min_after_dequeue, allow_smaller_final_batch=True)
But then I found that this op did not produce what I want.
It can only produce each sample in data.csv
for 2 times, but the generated order is not clearly. For example, 3 line data in data.csv
[[1]
[2]
[3]]
it will produce (which each sample just appear 2 times, but the order is optional)
[1]
[1]
[3]
[2]
[2]
[3]
but what I want is (each epoch is separate, shuffle in each epoch)
(epoch 1:)
[1]
[2]
[3]
(epoch 2:)
[1]
[3]
[2]
In addition, how to know when 1 epoch was done? Is there some flag variables? Thanks!
my code is here.
import tensorflow as tf
def read_my_file_format(filename_queue):
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [['1'], ['1'], ['1']]
col1, col2, col3 = tf.decode_csv(value, record_defaults=record_defaults, field_delim='-')
# col1 = list(map(int, col1.split(',')))
# col2 = list(map(int, col2.split(',')))
return col1, col2, col3
def input_pipeline(filenames, batch_size, num_epochs=1):
filename_queue = tf.train.string_input_producer(
filenames, num_epochs=num_epochs, shuffle=True)
col1,col2,col3 = read_my_file_format(filename_queue)
min_after_dequeue = 10
capacity = min_after_dequeue + 3 * batch_size
col1_batch, col2_batch, col3_batch = tf.train.shuffle_batch(
[col1, col2, col3], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue, allow_smaller_final_batch=True)
return col1_batch, col2_batch, col3_batch
filenames=['1.txt']
batch_size = 3
num_epochs = 1
a1,a2,a3=input_pipeline(filenames, batch_size, num_epochs)
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
# start populating filename queue
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop():
a, b, c = sess.run([a1, a2, a3])
print(a, b, c)
except tf.errors.OutOfRangeError:
print('Done training, epoch reached')
finally:
coord.request_stop()
coord.join(threads)
my data is like
1,2-3,4-A
7,8-9,10-B
12,13-14,15-C
17,18-19,20-D
22,23-24,25-E
27,28-29,30-F
32,33-34,35-G
37,38-39,40-H
See Question&Answers more detail:
os