For example,
x = array([[1,2,3],[3,2,5],[9,0,2]])
some_func(x) gives (2,1)
I know one can do it by a custom function:
def find_min_idx(x):
k = x.argmin()
ncol = x.shape[1]
return k/ncol, k%ncol
However, I am wondering if there's a numpy built-in function that does this faster.
Thanks.
EDIT: thanks for the answers. I tested their speeds as follows:
%timeit np.unravel_index(x.argmin(), x.shape)
#100000 loops, best of 3: 4.67 μs per loop
%timeit np.where(x==x.min())
#100000 loops, best of 3: 12.7 μs per loop
%timeit find_min_idx(x) # this is using the custom function above
#100000 loops, best of 3: 2.44 μs per loop
Seems the custom function is actually faster than unravel_index() and where(). unravel_index() does similar things as the custom function plus the overhead of checking extra arguments. where() is capable of returning multiple indices but is significantly slower for my purpose. Perhaps pure python code is not that slow for doing just two simple arithmetic and the custom function approach is as fast as one can get.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…