Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
408 views
in Technique[技术] by (71.8m points)

python - Fastest way to get hamming distance for integer array

Let a and b be vectors of the same size with 8-bit integers (0-255). I want to compute the number of bits where those vectors differs i.e. a Hamming distance between vectors formed by concatenation of binary representations of those numbers. For example:

a = [127,255]
b= [127,240]

Using numpy library

np.bitwise_xor(a,b)
# Output: array([ 0, 15])

What I need is now to binary represent each element of the above array and count number of 1s in all the elements of the array. The above example will give hamming distance of 0+4 = 4. Any fast and elegant solution for this in Python?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Approach #1 : We could broadcast them into binary bits & count number of different bits, like so -

def hamming_distance(a, b):
    r = (1 << np.arange(8))[:,None]
    return np.count_nonzero( (a & r) != (b & r) )

Sample run -

In [144]: a = [127,255]
     ...: b = [127,240]
     ...: 

In [145]: hamming_distance(a, b)
Out[145]: 4

Approach #2 : Using bitwise-xor operation, we can find out the number of different binary bits between a and b -

def hamming_distance_v2(a, b):
    r = (1 << np.arange(8))[:,None]
    return np.count_nonzero((np.bitwise_xor(a,b) & r) != 0)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...